cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386797 Numbers that have exactly two exponents in their prime factorization that are equal to 2.

Original entry on oeis.org

36, 100, 180, 196, 225, 252, 300, 396, 441, 450, 468, 484, 588, 612, 676, 684, 700, 828, 882, 980, 1044, 1089, 1100, 1116, 1156, 1225, 1260, 1300, 1332, 1444, 1452, 1476, 1521, 1548, 1575, 1692, 1700, 1800, 1900, 1908, 1980, 2028, 2100, 2116, 2124, 2156, 2178, 2196
Offset: 1

Views

Author

Amiram Eldar, Aug 02 2025

Keywords

Comments

First differs from its subsequence A375144 at n = 38: a(38) = 1800 = 2^3 * 3^2 * 5^2 is not a term of A375144.
Numbers k such that A369427(k) = 2.
The asymptotic density of this sequence is Product_{p primes} (1 - 1/p^2 + 1/p^3) * ((Sum_{p prime} (p-1)/(p^3 - p + 1))^2 - Sum_{p prime} ((p-1)^2/(p^3 - p + 1)^2)) / 2 = 0.023701044250873975412... (the product is A330596) (Elma and Martin, 2024).

Crossrefs

A375144 is a subsequence.
Numbers that have exactly two exponents in their prime factorization that are equal to k: this sequence (k=2), A386801 (k=3), A386805 (k=4), A386809 (k=5).
Numbers that have exactly m exponents in their prime factorization that are equal to 2: A337050 (m=0), A386796 (m=1), this sequence (m=2), A386798 (m=3).

Programs

  • Mathematica
    f[p_, e_] := If[e == 2, 1, 0]; s[1] = 0; s[n_] := Plus @@ f @@@ FactorInteger[n]; Select[Range[2200], s[#] == 2 &]
  • PARI
    isok(k) = vecsum(apply(x -> if(x == 2, 1, 0), factor(k)[, 2])) == 2;