cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386810 Numbers that have exactly three exponents in their prime factorization that are equal to 5.

This page as a plain text file.
%I A386810 #11 Aug 03 2025 16:05:43
%S A386810 24300000,130691232,170100000,267300000,315900000,413100000,461700000,
%T A386810 558900000,653456160,704700000,753300000,899100000,996300000,
%U A386810 1044900000,1142100000,1190700000,1252332576,1287900000,1433700000,1437603552,1482300000,1628100000,1680700000
%N A386810 Numbers that have exactly three exponents in their prime factorization that are equal to 5.
%C A386810 The asymptotic density of this sequence is Product_{p primes} (1 - 1/p^5 + 1/p^6) * (s(1)^3 + 3*s(1)*s(2) + 2*s(3)) / 6 = 1.38560245036673575581*10^(-8), where s(m) = (-1)^(m-1) * Sum_{p prime} (1/(p^6/(p-1)-1))^m (Elma and Martin, 2024).
%H A386810 Amiram Eldar, <a href="/A386810/b386810.txt">Table of n, a(n) for n = 1..10000</a>
%H A386810 Ertan Elma and Greg Martin, <a href="https://doi.org/10.4153/S0008439524000584">Distribution of the number of prime factors with a given multiplicity</a>, Canadian Mathematical Bulletin, Vol. 67, No. 4 (2024), pp. 1107-1122; <a href="https://arxiv.org/abs/2406.04574">arXiv preprint</a>, arXiv:2406.04574 [math.NT], 2024.
%H A386810 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>.
%p A386810 M:= 10^10: # for terms <= M
%p A386810 B:= select(t -> ifactors(t)[2][..,2]=[1,1,1],[$1..floor(M^(1/5))]):
%p A386810 R:= NULL:
%p A386810 for i from 1 to nops(B) do
%p A386810   Q:= select(t -> igcd(t,B[i]) = 1 and not member(5, ifactors(t)[2][..,2]), [$1 .. M/B[i]^5]);
%p A386810   R:= R, op(B[i]^5 * Q);
%p A386810 od:
%p A386810 sort([R]); # _Robert Israel_, Aug 03 2025
%t A386810 seq[lim_] := Module[{s = {}, sqfs = Select[Range[Surd[lim, 5]], SquareFreeQ[#] && PrimeNu[#] == 3 &]}, Do[s = Join[s, sqf^5 * Select[Range[lim/sqf^5], CoprimeQ[#, sqf] && !MemberQ[FactorInteger[#][[;; , 2]], 5] &]], {sqf, sqfs}]; Union[s]]; seq[2*10^9]
%o A386810 (PARI) isok(k) = vecsum(apply(x -> if(x == 5, 1, 0), factor(k)[, 2])) == 3;
%Y A386810 Numbers that have exactly three exponents in their prime factorization that are equal to k: A386798 (k=2), A386802 (k=3), A386806 (k=4), this sequence (k=5).
%Y A386810 Numbers that have exactly m exponents in their prime factorization that are equal to 5: A386807 (m=0), A386808 (m=1), A386809 (m=2), this sequence (m=3).
%K A386810 nonn,easy
%O A386810 1,1
%A A386810 _Amiram Eldar_, Aug 03 2025