cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386822 Irregular table T(n,k) = Product_{j = 1..k} prime(j)^(n-j+1), n >= 0, k = 1..n.

This page as a plain text file.
%I A386822 #33 Sep 05 2025 14:23:20
%S A386822 1,2,4,12,8,72,360,16,432,10800,75600,32,2592,324000,15876000,
%T A386822 174636000,64,15552,9720000,3333960000,403409160000,5244319080000,128,
%U A386822 93312,291600000,700131600000,931875159600000,157486901972400000,2677277333530800000
%N A386822 Irregular table T(n,k) = Product_{j = 1..k} prime(j)^(n-j+1), n >= 0, k = 1..n.
%C A386822 Proper subset of A025487, in turn a proper subset of A055932.
%C A386822 For n > 1, T(n,n) is in A332785.
%C A386822 For 1 < k < n, T(n,k) is in A286708, where A286708 is the sequence of powerful numbers (i.e., in A001694) that are not prime powers.
%C A386822 For n > 1 and k > 1, T(n,k) is in A126706.
%H A386822 Michael De Vlieger, <a href="/A386822/b386822.txt">Table of n, a(n) for n = 0..703</a> (rows n = 0..37, flattened.)
%F A386822 T(0,1) = 1 by convention.
%F A386822 T(n,1) = A000079(n) = 2^n.
%F A386822 T(n,n) = A006939(n).
%e A386822 Table begins:
%e A386822   n\k   1      2        3          4           5
%e A386822   ----------------------------------------------
%e A386822   0:    1;
%e A386822   1:    2;
%e A386822   2:    4,    12;
%e A386822   3:    8,    72,     360;
%e A386822   4:   16,   432,   10800,     75600;
%e A386822   5:   32,  2592,  324000,  15876000,  174636000;
%e A386822 Table of n, a(n) = P(k)^m * Q(k), for n < 12, illustrating prime power factor exponents, where k = omega(a(n)) = A001221(a(n)), P = A002110, and Q = A006939:
%e A386822                                      Exponents of
%e A386822  n     a(n)                  k   m   2.3.5.7
%e A386822 ---------------------------------------------------
%e A386822  1       1                           .
%e A386822  2       2 = P(1)^0 * Q(1)   1   0   1
%e A386822  3       4 = P(1)^1 * Q(1)   1   1   2
%e A386822  4      12 = P(2)^0 * Q(2)   2   0   2.1
%e A386822  5       8 = P(1)^2 * Q(1)   1   2   3
%e A386822  6      72 = P(2)^1 * Q(2)   2   1   3.2
%e A386822  7     360 = P(3)^0 * Q(3)   3   0   3.2.1
%e A386822  8      16 = P(1)^3 * Q(1)   1   3   4
%e A386822  9     432 = P(2)^2 * Q(2)   2   2   4.3
%e A386822 10   10800 = P(3)^1 * Q(3)   3   1   4.3.2
%e A386822 11   75600 = P(4)^0 * Q(4)   4   0   4.3.2.1
%t A386822 Table[Product[Prime[j]^(n - j + 1), {j, k}], {n, 8}, {k, n}] // Flatten
%Y A386822 Cf. A000079, A001694, A006939, A025487, A055932, A126706, A286708, A332785, A387491.
%K A386822 nonn,tabf,easy,new
%O A386822 0,2
%A A386822 _Michael De Vlieger_, Aug 31 2025