cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386837 a(n) = Sum_{k=0..n} binomial(4*n+2,k) * binomial(4*n-k-1,n-k).

This page as a plain text file.
%I A386837 #8 Aug 05 2025 10:03:51
%S A386837 1,9,126,1978,32703,556887,9665476,170006256,3019802253,54047520709,
%T A386837 973141183002,17607177876438,319855973830251,5830329608105763,
%U A386837 106583422441886592,1953315343946213804,35875864591309216089,660185366847433991025,12169379986275311820790
%N A386837 a(n) = Sum_{k=0..n} binomial(4*n+2,k) * binomial(4*n-k-1,n-k).
%F A386837 a(n) = [x^n] (1+x)^(4*n+2)/(1-x)^(3*n).
%F A386837 a(n) = [x^n] 1/((1-x)^3 * (1-2*x)^(3*n)).
%F A386837 a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(4*n+2,k) * binomial(n-k+2,n-k).
%F A386837 a(n) = Sum_{k=0..n} 2^k * binomial(3*n+k-1,k) * binomial(n-k+2,n-k).
%o A386837 (PARI) a(n) = sum(k=0, n, binomial(4*n+2, k)*binomial(4*n-k-1, n-k));
%Y A386837 Cf. A386835, A386836.
%Y A386837 Cf. A370101, A386834.
%K A386837 nonn
%O A386837 0,2
%A A386837 _Seiichi Manyama_, Aug 05 2025