cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386840 Number of fundamental one-dimensional discrete statistical models with rational maximum likelihood estimator supported on n states and of degree 2n-6.

This page as a plain text file.
%I A386840 #17 Aug 20 2025 21:54:04
%S A386840 0,0,0,0,82,254,643,1442
%N A386840 Number of fundamental one-dimensional discrete statistical models with rational maximum likelihood estimator supported on n states and of degree 2n-6.
%C A386840 Unlike A143107 and A143108 (and conjecturally A143109), there are infinitely many polynomials in H(2,d) of degree 2n-6. Nevertheless, this sequence consists of finite numbers.
%H A386840 C. Améndola, V. Nguyen and J. Oldekop, <a href="https://arxiv.org/abs/2507.18686">One-dimensional discrete models of maximum likelihood degree one</a>, arXiv:2507.18686 [math.ST] 2025.
%H A386840 A. Bik and O. Marigliano, <a href="https://doi.org/10.1016/j.aam.2025.102928">Classifying one-dimensional discrete models with maximum likelihood degree one</a>, Adv. Appl. Math., 170 (2025), 102928.
%H A386840 J. Lebl and D. Lichtblau, <a href="http://dx.doi.org/10.1016/j.laa.2010.04.020">Uniqueness of certain polynomials constant on a hyperplane</a>, Linear Algebra Appl., 433 (2010), no. 4, 824-837
%Y A386840 Cf. A143107, A143108, A143109, A387029, A386841.
%K A386840 hard,nonn,more
%O A386840 1,5
%A A386840 _Carlos Améndola_, Aug 05 2025