cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386851 a(n) = floor(5*n^2/6).

Original entry on oeis.org

0, 3, 7, 13, 20, 30, 40, 53, 67, 83, 100, 120, 140, 163, 187, 213, 240, 270, 300, 333, 367, 403, 440, 480, 520, 563, 607, 653, 700, 750, 800, 853, 907, 963, 1020, 1080, 1140, 1203, 1267, 1333, 1400, 1470, 1540, 1613, 1687, 1763, 1840, 1920, 2000, 2083, 2167, 2253
Offset: 1

Views

Author

Chai Wah Wu, Aug 05 2025

Keywords

Crossrefs

Cf. A227347 (partial sums), A330451.

Programs

  • Mathematica
    a[n_]:=Floor[5n^2/6];Array[a,52] (* or *)  Rest[CoefficientList[Series[-x^2*(3*x^2 + 4*x + 3)/((x - 1)^3*(x + 1)*(x^2 + x + 1)),{x,0,52}],x]] (* or *) LinearRecurrence[{1,1,0,-1,-1,1},{0, 3, 7, 13, 20, 30, 40},52] (* James C. McMahon, Aug 12 2025 *)
  • Python
    def A386851(n): return 5*n**2//6

Formula

a(n) = A227347(n)-A227347(n-1) for n>1.
a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6) for n > 6.
a(2n) = A330451(n).
G.f.: -x^2*(3*x^2 + 4*x + 3)/((x - 1)^3*(x + 1)*(x^2 + x + 1)).