cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386852 Decimal expansion of the dihedral angle, in radians, between the pentagonal face and a triangular face in a pentagonal pyramid with equal edges (Johnson solid J_2).

This page as a plain text file.
%I A386852 #18 Aug 19 2025 10:38:12
%S A386852 6,5,2,3,5,8,1,3,9,7,8,4,3,6,8,1,8,5,9,9,5,3,9,0,6,3,1,6,4,3,8,2,2,5,
%T A386852 7,4,3,6,5,3,0,7,9,1,9,9,6,2,9,7,9,7,4,1,7,9,4,7,2,7,9,4,6,7,0,6,1,4,
%U A386852 3,5,8,3,8,2,1,0,3,9,5,3,2,9,0,9,5,6,7,1,4,4
%N A386852 Decimal expansion of the dihedral angle, in radians, between the pentagonal face and a triangular face in a pentagonal pyramid with equal edges (Johnson solid J_2).
%C A386852 Also the dihedral angle, in radians, between the 10-gonal face and a triangular face in a pentagonal cupola (Johnson solid J_5)
%H A386852 Paolo Xausa, <a href="/A386852/b386852.txt">Table of n, a(n) for n = 0..10000</a>
%H A386852 Wikipedia, <a href="https://en.wikipedia.org/wiki/Pentagonal_cupola">Pentagonal cupola</a>.
%H A386852 Wikipedia, <a href="https://en.wikipedia.org/wiki/Pentagonal_pyramid">Pentagonal pyramid</a>.
%H A386852 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%F A386852 Equals arcsec(sqrt(15 - 6*sqrt(5))) = arcsec(sqrt(15 - 6*A002163)).
%F A386852 Equals arccos(sqrt((5 + 2*sqrt(5))/15)) = arccos(sqrt((5 + A010476)/15)).
%e A386852 0.65235813978436818599539063164382257436530791996...
%t A386852 First[RealDigits[ArcSec[Sqrt[15 - 6*Sqrt[5]]], 10, 100]] (* or *)
%t A386852 First[RealDigits[Min[PolyhedronData["J2", "DihedralAngles"]], 10, 100]]
%o A386852 (PARI) acos(sqrt((5+2*sqrt(5))/15)) \\ _Charles R Greathouse IV_, Aug 19 2025
%Y A386852 Cf. A179552 (J_2 volume), A179553 (J_2 surface area).
%Y A386852 Cf. A179590 (J_5 volume), A179591 (J_5 surface area).
%Y A386852 Cf. A002163, A010476.
%K A386852 nonn,cons,easy
%O A386852 0,1
%A A386852 _Paolo Xausa_, Aug 05 2025