cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386860 The total number of big descents in all parking functions of length n.

This page as a plain text file.
%I A386860 #35 Aug 19 2025 16:36:43
%S A386860 0,0,4,75,1296,24010,491520,11160261,280000000,7716919716,
%T A386860 232190115840,7582217051695,267271301197824,10120214355468750,
%U A386860 409827566090715136,17679671788737097545,809596873977295011840,39228032245196478804616,2005401600000000000000000,107880615499838355594014931
%N A386860 The total number of big descents in all parking functions of length n.
%C A386860 A big descent in a parking function (x_1,x_2,...,x_k) is a position i such that x_i - x_{i+1} >= 2.
%H A386860 Amanda Priestley, <a href="/A386860/b386860.txt">Table of n, a(n) for n = 1..100</a>
%H A386860 Kyle Celano, Jennifer Elder, Kimberly P. Hadaway, Pamela E. Harris, Amanda Priestley, and Gabe Udell, <a href="https://arxiv.org/abs/2508.11587">Inversions in parking functions</a>, arXiv:2508.11587 [math.CO], 2025.
%F A386860 a(n) = binomial(n-1,2)*(n+1)^(n-2).
%F A386860 a(n) = A386861(n)*2/n. - _Paolo Xausa_, Aug 07 2025
%e A386860 a(2) = 0 because in the 3 parking functions of length 2 (11, 12, 21), there are 0 descents where the difference is strictly greater than one.
%e A386860 a(3) = 4 as of the 16 parking functions of length 3 (111, 112, 122, 121, 212, 221, 211, 123, 132, 213, 312, 231, 321, 113, 131, 311) the parking functions (131, 311, 312, 231) all each have one big descent. Thus the total number of big descents in all parking functions of length 3 is 4.
%t A386860 A386860[n_] := Binomial[n-1, 2]*(n+1)^(n-2);
%t A386860 Array[A386860, 20] (* _Paolo Xausa_, Aug 07 2025 *)
%Y A386860 Cf. A000272(n+1) (parking functions), A333829, A386015, A386861.
%K A386860 nonn,easy
%O A386860 1,3
%A A386860 _Amanda Priestley_, Aug 05 2025