This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A386874 #12 Aug 19 2025 10:57:57 %S A386874 0,1,1,0,4,7,4,1,0,15,40,42,23,7,1,0,56,201,306,262,140,48,10,1,0,209, %T A386874 943,1877,2189,1672,881,325,82,13,1,0,780,4239,10412,15368,15276, %U A386874 10841,5660,2194,624,125,16,1,0,2911,18506,54051,96501,118175,105495 %N A386874 Irregular triangle read by rows: row n consists of the coefficients in the expansion of the polynomial (1/(2*w)) * (x^2 + x) * ((((v + w)/2)^(n - 1)) * (x^2 + 2*x + 4 + w) - (((v - w)/2)^(n - 1)) * (x^2 + 2*x + 4 - w)), where v = x^2 + 4*x + 4 and w = sqrt(x^4 + 4*x^3 + 12*x^2 + 20*x + 12). %C A386874 T(n,k) is the number of ways to assign horizontal or vertical barriers at each interior construction dot of the 4 X 2n barrier-free Celtic shadow diagram CK_4^(2n) such that the resulting design consists of exactly k connected components. %C A386874 The n-th row is the coefficients in the expansion of the Kauffman bracket polynomial for the shadow of the Celtic link CK_4^(2n). %H A386874 Roger Antonsen and Laura Taalman, <a href="https://archive.bridgesmathart.org/2021/bridges2021-87.html#gsc.tab=0">Categorizing Celtic Knot Designs</a>, in Proceedings of Bridges 2021: Mathematics, Art, Music, Architecture, Culture, 2021, pp. 87-94. %H A386874 Jonathan L. Gross and Thomas W. Tucker, <a href="https://doi.org/10.1007/s00454-010-9257-0">A Celtic Framework for Knots and Links</a>, Discrete & Computational Geometry 46 (2011), 86-99. %H A386874 Franck Ramaharo, <a href="https://arxiv.org/abs/2508.10410">The bracket polynomial of the Celtic link shadow CK_4^(2n)</a>, arXiv:2508.10410 [math.GT], 2025. See p. 6. %F A386874 T(n,1) = A001353(n). %F A386874 G.f.: x*y*(x + 1)*(1 - x*y) / (1 - ((x + 2)^2)*y + ((x + 1)^3)*y^2). %e A386874 The triangle T(n,k) begins: %e A386874 n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 %e A386874 1: 0 1 1 %e A386874 2: 0 4 7 4 1 %e A386874 3: 0 15 40 42 23 7 1 %e A386874 4: 0 56 201 306 262 140 48 10 1 %e A386874 5: 0 209 943 1877 2189 1672 881 325 82 13 1 %e A386874 6: 0 780 4239 10412 15368 15276 10841 5660 2194 624 125 16 1 %e A386874 7: 0 2911 18506 54051 96501 118175 105495 71107 36885 14817 4579 1064 177 19 1 %e A386874 ... %t A386874 With[{nmax = 15}, CoefficientList[CoefficientList[Series[x*y*(x + 1)*(1 - x*y)/(1 - ((x + 2)^2)*y + ((x + 1)^3)*y^2), {x, 0, 2*nmax}, {y, 0, nmax}], y], x]] // Flatten %o A386874 (Maxima) %o A386874 nmax: 15$ v: x^2 + 4*x + 4$ w: sqrt(x^4 + 4*x^3 + 12*x^2 + 20*x + 12)$ %o A386874 p(n, x) := expand((1/(2*w))*(x^2 + x)*((((v + w)/2)^(n - 1))*(x^2 + 2*x + 4 + w) - (((v - w)/2)^(n - 1))*(x^2 + 2*x + 4 - w)))$ %o A386874 create_list(ratcoef(p(n, x), x, k), n, 1, nmax, k, 0, 2*n); %Y A386874 Row sums: A013730. %Y A386874 Cf. A299989, A300192, A300453, A300454, A316659, A316989. %K A386874 nonn,tabf %O A386874 1,5 %A A386874 _Franck Maminirina Ramaharo_, Aug 06 2025