This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A386883 #14 Aug 25 2025 09:23:36 %S A386883 0,1,0,-1,0,-1,-2,-1,-2,-1,-2,-1,-2,-3,-2,-3,-2,-3,-2,-3,-2,-3,-2,-3, %T A386883 -2,-3,-2,-3,-2,-3,-2,-3,-2,-3,-4,-3,-4,-3,-4,-3,-4,-3,-4,-3,-4,-3,-4, %U A386883 -3,-4,-3,-4,-3,-4,-3,-4,-3,-4,-3,-4,-3,-4,-3,-4,-3,-4,-3 %N A386883 Define a sequence of rationals by f(0) = 0, thereafter f(n) = f(n-1) - 1/n if that is >= 0, otherwise f(n) = f(n-1) + 1/n; a(n) corresponds to the number of addition steps minus the number of subtraction steps involved in calculating f(n). %C A386883 This sequence is unbounded below. %C A386883 By contradiction: %C A386883 - let M be the minimum value of the sequence and a(n) = M be the first occurrence of M in the sequence, %C A386883 - as an addition step is always followed by a subtraction step, and the value M can only be followed by M+1, a(n+2*k) = M and a(n+2*k+1) = M+1 for any k >= 0, %C A386883 - for any m >= n, f(m) = f(n) + Sum_{k = n+1..m} (-1)^(k-n-1) / k, %C A386883 - as the alternating harmonic series converges to log(2), the sequence f will have a positive limit, say L > 0, %C A386883 - hence for some m0 >= 0, f(m) > L/2 for any m >= m0, %C A386883 - let k be such that n+2*k >= m0 and 1/(n+2*k+1) < L/2: f(n+2*k) > L/2, so f(n+2*k+1) = f(n+2*k) - 1/(n+2*k+1), and a(n+2*k+1) = a(n+2*k)-1 = M-1, a contradiction. %H A386883 Rémy Sigrist, <a href="/A386883/b386883.txt">Table of n, a(n) for n = 0..10000</a> %F A386883 a(n) = Sum_{k = 1..n} sign(A231692(n)/A231693(n) - A231692(n-1)/A231693(n-1)). %e A386883 Sequence begins: %e A386883 n a(n) f(n)-f(n-1) %e A386883 -- ---- ----------- %e A386883 0 0 N/A %e A386883 1 1 +1 %e A386883 2 0 -1/2 %e A386883 3 -1 -1/3 %e A386883 4 0 +1/4 %e A386883 5 -1 -1/5 %e A386883 6 -2 -1/6 %e A386883 7 -1 +1/7 %e A386883 8 -2 -1/8 %e A386883 9 -1 +1/9 %e A386883 10 -2 -1/10 %e A386883 11 -1 +1/11 %e A386883 12 -2 -1/12 %e A386883 13 -3 -1/13 %e A386883 14 -2 +1/14 %e A386883 15 -3 -1/15 %t A386883 Module[{f = 0, a = 0}, Array[If[f >= 1/#, f -= 1/#; a--, f += 1/#; a++] &, 100]] (* _Paolo Xausa_, Aug 25 2025 *) %o A386883 (PARI) { print1(0); f = 0; a = 0; for (n = 1, 65, if (f >= 1/n, f -= 1/n; a--, f += 1/n; a++); print1 (", "a);); } %Y A386883 Cf. A002162, A231692, A231693. %K A386883 sign,changed %O A386883 0,7 %A A386883 _Rémy Sigrist_, Aug 06 2025