cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386894 Markoff numbers that are powers of one odd prime or twice powers of one odd prime.

This page as a plain text file.
%I A386894 #23 Aug 13 2025 10:20:30
%S A386894 1,2,5,13,29,34,89,169,194,233,433,1597,2897,5741,7561,28657,33461,
%T A386894 43261,96557,426389,514229,646018,1686049,2012674,2922509,3276509,
%U A386894 11485154,21531778,94418953,253191266,321534781,433494437,780291637,1405695061,1475706146,2971215073,6684339842,19577194573
%N A386894 Markoff numbers that are powers of one odd prime or twice powers of one odd prime.
%C A386894 A subsequence of A000961 without numbers divisible by 4.
%C A386894 The powers of odd primes are given in A061345 (with offset 0).
%C A386894 These Markoff numbers (see A002559) have been proved to obey the Frobenius-Markoff uniqueness conjecture. See Aigner, Corollary 3.20, p. 59, and there the references [4] A. Baragar, [18] J. O. Button, and [119] Ying Zhang.
%D A386894 Martin Aigner, Markov's theorem and 100 years of the uniqueness conjecture. A mathematical journey from irrational numbers to perfect matchings. Springer, 2013.
%H A386894 Mong Lung Lang and Ser Peow Tan, <a href="https://arxiv.org/abs/math/0508443">A simple proof of the Markoff conjecture for prime powers</a>, arXiv:math/0508443 [math.NT], 2005.
%H A386894 Paul Schmutz, <a href="https://eudml.org/doc/165440">Systoles of arithmetic surfaces and the Markoff spectrum</a>, Math. Ann. 305 (1996), no. 1, 191-203.
%H A386894 Ying Zhang, <a href="https://arxiv.org/abs/math/0606283">An elementary proof of uniqueness of Markoff numbers which are prime powers</a>, arXiv:math/0606283 [math.NT], 2007.
%F A386894 Markoff numbers of the form 2^j*p^k, with an odd prime p, j = 0 or 1, and k >= 0, ordered strictly increasing.
%e A386894 26 = 2*13 is not a Markoff number, hence not in the present sequence.
%e A386894 610 = 2*5*61 is a Markoff number but not a prime power nor is 305 a prime power.
%t A386894 MAX=10^11; data=NestWhile[Select[Union[Sort/@Flatten[Table[{a, b, 3a b -c}/.MapThread[Rule, {{a, b, c}, #}]&/@Map[RotateLeft[ii, #]&, Range[3]], {ii, #}], 1]], Max[#]<MAX&]&, {{1, 1, 1}, {1, 1, 2}}, UnsameQ, 2];m=data//Flatten//Union;Select[m,PrimeNu@#<2||PrimeNu[#/2]<2&] (* _James C. McMahon_, Aug 12 2025 *)
%o A386894 (SageMath)
%o A386894 def A386894List(len: int = 50, MAX: int = 10**10) -> list[int]:
%o A386894     # Using function 'MarkovNumbers' from A002559.
%o A386894     M = MarkovNumbers(len, MAX)
%o A386894     U = set([1])
%o A386894     for m in M:  # if m is a Markov number and ...
%o A386894         z = ZZ(m)
%o A386894         if is_prime_power(z) or (is_even(z) and is_prime_power(z//2)):
%o A386894             U.add(m)
%o A386894     return sorted(U)
%o A386894 # Balance required sequence length and search depth.
%o A386894 print(A386894List(len=120, MAX=10**12))  # _Peter Luschny_, Aug 12 2025
%Y A386894 Cf. A000040, A000961, A002559, A061345, A256395.
%K A386894 nonn,easy
%O A386894 1,2
%A A386894 _Wolfdieter Lang_, Aug 07 2025