cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386903 Array read by descending antidiagonals: T(n,k) is the number of ways to partition n X n X n cube into k noncongruent strict cuboids, n>=5, k>=4.

Original entry on oeis.org

1, 0, 2, 3, 18, 9, 1, 64, 74, 12, 1, 143, 450, 193, 30, 0, 197, 2090, 1769, 491, 36, 0, 156, 8039, 13441, 5687, 857, 70, 0, 57, 24641, 88001, 56540, 12994, 1695, 80, 0, 5
Offset: 5

Views

Author

Janaka Rodrigo, Aug 07 2025

Keywords

Comments

A strict cuboid is a cuboid with all dimensions different.
The partitions here must be valid packings of the n X n X n cube, hence T(n,k) is generally less than the number of partitions of n^3 into distinct cuboids (x,y,z) with 1 <= x,y,z <= n, x != y != z and volume x*y*z.
There are no solutions for n < 5 or k < 4.

Examples

			Array begins:
  n\k|  4     5      6       7      8      9
  ---+--------------------------------------
   5 |  1     0      3       1      1      0
   6 |  2    18     64     143    197    156
   7 |  9    74    450    2090   8039  24641
   8 | 12   193   1769   13441  88001      ?
   9 | 30   491   5687   56540      ?      ?
  10 | 36   857  12994  170052      ?      ?
  ...
		

Crossrefs

Cf. A386296.
Columns: A386884 (k=4), A386902 (k=5).