This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A386916 #31 Aug 14 2025 15:14:47 %S A386916 18750,22500,24000,27000,28800,30720,32400,34560,36450,38880,43740, %T A386916 201684,345744,388962,526848,592704,666792,903168,1016064,1143072, %U A386916 1285956,1376256,1548288,1741824,1959552,2204496,2480058,7730448,8696754,33732864,35644128,37949472 %N A386916 Nonprimes k such that sopfr(k) = rad(k), where sopfr(k) is sum of the prime factors of k (counting multiplicity), and rad(k) is the product of its distinct prime factors. %C A386916 Nonprimes k such that A001414(k) = A007947(k). %C A386916 The nonprimes k in this sequence share the property sopfr(k) = rad(k) with the primes. %C A386916 From _Felix Huber_ and _David A. Corneth_, Aug 13 2025: (Start) %C A386916 Terms have at least three distinct prime factors. %C A386916 Proof: If a term had exactly 0 distinct prime factors then it is 1 but 1 is not a term. %C A386916 If a term had exactly one distinct prime divisor then it is of the form p^m where p is prime. If m = 1 then it is excluded as it is prime. If m > 1 then sopfr(p^m) = m*p > p = rad(p^m) contradicting equality between sopfr(p^m) and rad(p^m). %C A386916 If a term had exactly two distinct prime factors, p and q, then there would have to be positive integers x and y satisfying p*q = x*p + y*q, or equivalently, p*(q - x) = y*q. Since q divides neither p nor q - x, this is impossible; therefore, no term with exactly two distinct prime factors exists. %C A386916 Terms with three and more distinct prime factors do exist completing the proof. (End) %C A386916 Proper subset of A126706. - _Michael De Vlieger_, Aug 13 2025 %H A386916 David A. Corneth, <a href="/A386916/b386916.txt">Table of n, a(n) for n = 1..10344</a> (terms <= 10^35) %e A386916 18750 = 2*3*5^5 is a term because 2 + 3 + 5 + 5 + 5 + 5 + 5 = 2*3*5 = 30. %e A386916 1285956 = 2^2*3^8*7^2 is a term because 2 + 2 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 7 + 7 = 2*3*7 = 42. %e A386916 18537438215625 = 3*5^5*7^11 is a term because 3 + 5*5 + 11*7 = 3*5*7 = 105. %p A386916 A386916:=proc(n) %p A386916 option remember; %p A386916 local k,i; %p A386916 if n=1 then %p A386916 18750 %p A386916 else %p A386916 for k from procname(n-1)+1 do %p A386916 if not isprime(k) and NumberTheory:-Radical(k)=add(i[1]*i[2],i in ifactors(k)[2]) then %p A386916 return k %p A386916 fi %p A386916 od %p A386916 fi; %p A386916 end proc; %p A386916 seq(A386916(n),n=1..10); %t A386916 q[k_] := !PrimeQ[k] && Module[{f = FactorInteger[k]},Plus @@ Times @@@f == Times @@ f[[;;, 1]]]; Select[Range[2, 10^6], q] (* _Amiram Eldar_, Aug 13 2025 *) %o A386916 (PARI) is(n) = {my(f = factor(n)); if(#f~ < 3, return(0)); prod(i = 1, #f~, f[i, 1]) == sum(i = 1, #f~, f[i,1]*f[i,2])} \\ _David A. Corneth_, Aug 13 2025 %Y A386916 Subsequence of A018252. %Y A386916 Cf. A000040, A001414, A007947, A085718. %K A386916 nonn %O A386916 1,1 %A A386916 _Felix Huber_, Aug 13 2025