cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386921 Numerators of the partial sums of 1/d(prime(k)+1), where d is the number of divisors function.

Original entry on oeis.org

1, 5, 13, 4, 3, 7, 23, 25, 53, 7, 5, 11, 23, 73, 377, 49, 67, 18, 113, 77, 41, 21, 257, 131, 68, 559, 287, 73, 599, 307, 629, 213, 109, 83, 337, 689, 719, 739, 1493, 1523, 4609, 4699, 33253, 34513, 34933, 35353, 36193, 36613, 37033, 37663, 38083, 7667, 7835, 7891
Offset: 1

Views

Author

Amiram Eldar, Aug 08 2025

Keywords

Examples

			Fractions begin with 1/2, 5/6, 13/12, 4/3, 3/2, 7/4, 23/12, 25/12, 53/24, 7/3, 5/2, 11/4, ...
		

Crossrefs

Cf. A000005, A008329, A008864, A104528, A386922 (denominators).

Programs

  • Mathematica
    Numerator[Accumulate[1/DivisorSigma[0, Prime[Range[100]] + 1]]]
  • PARI
    list(lim) = {my(s = 0); forprime(p = 1, lim, s += (1/numdiv(p+1)); print1(numerator(s), ", "));}

Formula

a(n) = numerator(Sum_{k=1..n} 1/A008329(k)).
a(n)/A386922(n) <= 4 * K * n/log(n)^(3/2) + O(n*log(log(n))/log(n)^(5/2)), where K = (1/sqrt(Pi)) * Product_{p prime} sqrt(p/(p-1)) * (p * log(p/(p-1)) - 1/(p-1)) = 0.25320111501639846923... (Iudelevich, 2022). Gabdullin et al. (2023) conjectured that a(n)/A386922(n) ~ K * n/log(n)^(3/2).