This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A386922 #7 Aug 09 2025 07:47:04 %S A386922 2,6,12,3,2,4,12,12,24,3,2,4,8,24,120,15,20,5,30,20,10,5,60,30,15,120, %T A386922 60,15,120,60,120,40,20,15,60,120,120,120,240,240,720,720,5040,5040, %U A386922 5040,5040,5040,5040,5040,5040,5040,1008,1008,1008,1008,63,1008,5040,5040 %N A386922 Denominators of the partial sums of 1/d(prime(k)+1), where d is the number of divisors function. %H A386922 Amiram Eldar, <a href="/A386922/b386922.txt">Table of n, a(n) for n = 1..10000</a> %H A386922 Mikhail R. Gabdullin, Vitalii V. Iudelevich, and Sergei V. Konyagin, <a href="https://arxiv.org/abs/2304.04805">Karatsuba's divisor problem and related questions</a>, arXiv:2304.04805 [math.NT], 2023. %H A386922 Vitalii V. Iudelevich, <a href="https://doi.org/10.4213/im9270e">On the Karatsuba divisor problem</a>, Izvestiya: Mathematics, Vol. 86, No. 5 (2022), pp. 992-1019; <a href="https://arxiv.org/abs/2304.03049">arXiv preprint</a>, arXiv:2304.03049 [math.NT], 2023. %F A386922 a(n) = denominator(Sum_{k=1..n} 1/A008329(k)). %e A386922 Fractions begin with 1/2, 5/6, 13/12, 4/3, 3/2, 7/4, 23/12, 25/12, 53/24, 7/3, 5/2, 11/4, ... %t A386922 Denominator[Accumulate[1/DivisorSigma[0, Prime[Range[100]] + 1]]] %o A386922 (PARI) list(lim) = {my(s = 0); forprime(p = 1, lim, s += (1/numdiv(p+1)); print1(denominator(s), ", "));} %Y A386922 Cf. A000005, A008329, A008864, A104529, A386921 (numerators). %K A386922 nonn,frac,easy %O A386922 1,1 %A A386922 _Amiram Eldar_, Aug 08 2025