A386945 Short legs of Pythagorean triples of the form (p^2 - q^2, 2*p*q, p^2 + q^2), ordered by increasing hypotenuse (A386943).
6, 12, 10, 16, 24, 27, 14, 20, 40, 32, 24, 48, 18, 54, 28, 40, 56, 80, 45, 22, 75, 66, 32, 64, 96, 48, 72, 96, 36, 72, 26, 78, 108, 130, 56, 40, 80, 112, 120, 63, 30, 160, 90, 44, 147, 150, 88, 132, 64, 180, 128, 176, 48, 34, 192, 96, 102, 144, 170, 192, 125, 72
Offset: 1
Examples
The nonprimitive Pythagorean triple (6, 8, 10) is of the form (u^2 - v^2, 2*u*v, u^2 + v^2): From u = 3 and v = 1 follows u^2 - v^2 = 8 (long leg), 2*u*v = 6 (short leg), u^2 - v^2 = 10 (hypotenuse). Therefore, 6 is a term.
Links
- Felix Huber, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Pythagorean Triple
Programs
-
Maple
A386945:=proc(N) # To get all hypotenuses <= N local i,l,u,v; l:=[]; for u from 2 to floor(sqrt(N-1)) do for v to min(u-1,floor(sqrt(N-u^2))) do if gcd(u,v)>1 or is(u-v,even) then l:=[op(l),[u^2+v^2,max(2*u*v,u^2-v^2),min(2*u*v,u^2-v^2)]] fi od od; l:=sort(l); return seq(l[i,3],i=1..nops(l)); end proc; A386945(296);
Comments