This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A386946 #15 Aug 27 2025 18:20:26 %S A386946 0,0,1,1,2,1,5,1,10,4,27,1,88,1,247,29,810,1,2780,1,9260,249,32067,1, %T A386946 113520,26,400025,2704,1432868,1,5179905,1,18784170,32069,68635479, %U A386946 271,252201136,1,930138523,400027,3446168660,1,12817096533,1,47820447036,5173304 %N A386946 a(n) is the number of imprimitive (periodic) 2n-bead balanced binary necklaces. %C A386946 A003239(n) is the number of 2n-bead balanced binary necklaces. A022553(n) among them are primitive. %C A386946 The remaining a(n) necklaces are periodic. %C A386946 Sequences counting 2n-bead balanced binary necklaces: %C A386946 primitive imprimitive %C A386946 +-----------------------+---------+ %C A386946 self-complementary | A000048 A115118 | A000013 | %C A386946 complement pairs | A383904 A387130 | A386388 | %C A386946 +-----------------------+---------+ %C A386946 | A022553 this | A003239 | %C A386946 +-----------------------+---------+ %H A386946 Tilman Piesk, <a href="/A386946/b386946.txt">Table of n, a(n) for n = 0..1000</a> %F A386946 a(n) = A003239(n) - A022553(n). %F A386946 a(n) = A115118(n) + 2 * A387130(n). %e A386946 n | A003239(n) A022553(n) | a(n) %e A386946 0 | 1 1 | 0 %e A386946 1 | 1 1 | 0 %e A386946 2 | 2 1 | 1 %e A386946 3 | 4 3 | 1 %e A386946 4 | 10 8 | 2 %e A386946 5 | 26 25 | 1 %e A386946 6 | 80 75 | 5 %e A386946 7 | 246 245 | 1 %e A386946 8 | 810 800 | 10 %e A386946 9 | 2704 2700 | 4 %e A386946 10 | 9252 9225 | 27 %e A386946 11 | 32066 32065 | 1 %e A386946 12 | 112720 112632 | 88 %e A386946 13 | 400024 400023 | 1 %e A386946 14 | 1432860 1432613 | 247 %e A386946 15 | 5170604 5170575 | 29 %e A386946 16 | 18784170 18783360 | 810 %e A386946 There are A003239(8) = 810 balanced binary necklaces of length 16. A022553(8) = 800 of them are primitive. a(n) = 10 are not. See A387130 for a list. %K A386946 nonn,new %O A386946 0,5 %A A386946 _Tilman Piesk_, Aug 10 2025