This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A386951 #7 Aug 15 2025 00:04:22 %S A386951 6,24,60,120,210,720,3360,9240,166320,970200,43243200 %N A386951 Intersection of A025487 and A007531. %C A386951 These numbers are the products of three consecutive integers that are also Hardy-Ramanujan integers; that is, of the form 2^k1*3^k2*...*p_n^k_n, where k1 >= k2 >= ... >= k_n. This sequence is finite with last term a(11) = 350*351*352 = 43243200. %e A386951 a(1) = 6 = 1*2*3 = 2^1 * 3^1. %e A386951 a(2) = 24 = 2*3*4 = 2^3 * 3^1. %e A386951 a(3) = 60 = 3*4*5 = 2^2 * 3^1 * 5^1. %e A386951 a(4) = 120 = 4*5*6 = 2^3 * 3^1 * 5^1. %e A386951 a(5) = 210 = 5*6*7 = 2^1 * 3^1 * 5^1 * 7^1. %e A386951 a(6) = 720 = 8*9*10 = 2^4 * 3^2 * 5^1. %t A386951 Select[FactorialPower[Range[0, 1000], 3], (Max@ Differences[(f = FactorInteger[#])[[;; , 2]]] < 1 && f[[-1, 1]] == Prime[Length[f]]) &] (* _Amiram Eldar_, Aug 10 2025 *) %o A386951 (Python) %o A386951 from sympy import prime, factorint %o A386951 def is_Hardy_Ramanujan(n): %o A386951 factors = factorint(n) %o A386951 p_idx = len(factors) %o A386951 if list(factors.keys())[-1] != prime(p_idx): %o A386951 return False %o A386951 expos = list(factors.values()) %o A386951 e = expos[0] %o A386951 for i in range(1, p_idx): %o A386951 if expos[i] > e: %o A386951 return False %o A386951 e = expos[i] %o A386951 return True %o A386951 print([ n*(n+1)*(n+2) for n in range(1, 1000) if is_Hardy_Ramanujan(n*(n+1)*(n+2))]) %Y A386951 Cf. A055932, A025487, A007531, A385189, A385956. %K A386951 nonn,fini,full %O A386951 1,1 %A A386951 _Ken Clements_, Aug 10 2025