cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386953 Total number of entries in rows 0,1,...,n of Pascal's triangle not divisible by 9.

This page as a plain text file.
%I A386953 #12 Aug 17 2025 07:59:34
%S A386953 1,3,6,10,15,21,28,36,45,49,57,69,78,90,105,119,135,153,160,174,195,
%T A386953 209,228,252,273,297,324,328,336,348,360,378,402,422,450,486,495,513,
%U A386953 540,560,588,624,655,693,738,752,780,822,850,888,936,978,1026,1080,1087
%N A386953 Total number of entries in rows 0,1,...,n of Pascal's triangle not divisible by 9.
%H A386953 James G. Huard, Blair K. Spearman, and Kenneth S. Williams, <a href="http://doi.org/10.4064/aa-78-4-331-349">Pascal's triangle (mod 9)</a>, Acta Arithmetica, 78 (1997), 331-349.
%o A386953 (Python)
%o A386953 import re
%o A386953 from gmpy2 import digits
%o A386953 def A386953(n):
%o A386953     c = 0
%o A386953     for m in range(n+1):
%o A386953         s = digits(m,3)
%o A386953         n1 = s.count('1')
%o A386953         n2 = s.count('2')
%o A386953         n01 = s.count('10')
%o A386953         n02 = s.count('20')
%o A386953         n11 = len(re.findall('(?=11)',s))
%o A386953         n12 = s.count('21')
%o A386953         c += ((3*((1+n01<<2)+n11)+((n02<<2)+n12<<2))*3**n2<<n1)//3>>2
%o A386953     return c
%Y A386953 Cf. A001316, A006046-A006048, A194458, A194459, A382720-A382731.
%Y A386953 Partial sums of A386952.
%K A386953 nonn
%O A386953 0,2
%A A386953 _Chai Wah Wu_, Aug 10 2025