This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A386963 #52 Aug 29 2025 11:42:23 %S A386963 5,4,4,3,2,4,2,3,4,3,2,3,2,4,2,3,4,2,3,3,2,3,2,2,3,4,4,3,2,2,2,2,2,3, %T A386963 3,2,4,2,2,2,4,2,3,2,3,3,2,3,2,4,2,2,2,4,4,2,2,2,2,3,2,2,2,2,3,4,3,2, %U A386963 4,2,2,2,3,2,3,2,3,2,4,2,3,4,2,2,2,3,2,2,2,2,2,3,4,3,2,2,2,2,2,3,2 %N A386963 Gaps between positions of odd terms in A065090. %C A386963 For n >= 2 we have a(n) in {2,3,4}: %C A386963 a(n) = 2 if no prime lies between the two successive odd terms, %C A386963 a(n) = 3 if a single prime lies between them, %C A386963 a(n) = 4 if two primes lie between them. %C A386963 The initial 5 comes from 3, 5, 7 between 1 and 9. %C A386963 Conjecture: a(n) tends to 2 in frequency (i.e., {n : a(n) = 2} has natural density 1). %C A386963 Conjecture is true because the primes have natural density 0. - _Robert Israel_, Aug 29 2025 %e A386963 A065090: 1, 2, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, ... %e A386963 Odd terms occur at positions: 1, 6, 10, 14, 17, 19, 23, 25, ... %e A386963 Hence a(n): 5, 4, 4, 3, 2, 4, 2, ... %t A386963 a065090=Select[Range[335],#==2||!PrimeQ[#]&];l=Length[a065090];p={};Do[If[OddQ[a065090[[i]] ],AppendTo[p,i]],{i,l}];Differences[p] (* _James C. McMahon_, Aug 29 2025 *) %o A386963 (Python) %o A386963 from sympy import isprime %o A386963 def gaps_generator(): %o A386963 pos = 0 %o A386963 last = None %o A386963 k = 1 %o A386963 while True: %o A386963 if not (k % 2 == 1 and isprime(k)): # in A065090 %o A386963 pos += 1 %o A386963 if k % 2 == 1: # odd term (A014076) %o A386963 if last is None: %o A386963 last = pos %o A386963 else: %o A386963 yield pos - last %o A386963 last = pos %o A386963 k += 1 %o A386963 def a(n: int) -> int: %o A386963 g = gaps_generator() %o A386963 for _ in range(n - 1): %o A386963 next(g) %o A386963 return next(g) %o A386963 (PARI) lista(nn) = my(vio = select(x->(x % 2), select(m->(!isprime(m) || m==2), [1..nn]), 1)); vector(#vio-1, k, vio[k+1] - vio[k]); \\ _Michel Marcus_, Aug 16 2025 %Y A386963 Cf. A065090, A014076. %K A386963 nonn,easy,new %O A386963 1,1 %A A386963 _Aied Sulaiman_, Aug 11 2025