This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A386964 #14 Aug 12 2025 20:33:55 %S A386964 2,23,235,2357,23571,235713,2357137,23571379,235713793,2357137939, %T A386964 23571379391,235713793917,2357137939171,23571379391713, %U A386964 235713793917137,2357137939171373,23571379391713739,235713793917137391,2357137939171373917,23571379391713739171,235713793917137391713 %N A386964 a(1) = prime(1) = 2, a(n) = 10*a(n-1) + (prime(n) mod 10). %H A386964 Michael S. Branicky, <a href="/A386964/b386964.txt">Table of n, a(n) for n = 1..1000</a> %F A386964 a(n) = concatenation of A007652(1)..A007652(n). %p A386964 a:= proc(n) option remember; `if`(n<1, 0, a(n-1)*10+irem(ithprime(n), 10)) end: %p A386964 seq(a(n), n=1..21); # _Alois P. Heinz_, Aug 12 2025 %t A386964 a[1]=2;a[n_]:=10a[n-1]+Mod[Prime[n],10];Array[a,21] (* _James C. McMahon_, Aug 12 2025 *) %o A386964 (Python) %o A386964 from sympy import nextprime %o A386964 from itertools import islice %o A386964 def A386964(): # generator of terms %o A386964 an = pn = 2 %o A386964 while True: %o A386964 yield an %o A386964 an = 10*an + (pn:=nextprime(pn))%10 %o A386964 print(list(islice(A386964(), 21))) %Y A386964 Cf. A007652, A276481. %K A386964 nonn,base,easy %O A386964 1,1 %A A386964 _Michael S. Branicky_, Aug 11 2025