A386987 For n >= 2, a(n) is the least r >= 1 such that T(n - r) + ... + T(n - 1) = T(n + 1) + ... + T(n + r) where T(i) is A010060(i).
2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 4, 3, 3, 4, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 4, 3, 3
Offset: 2
Keywords
Examples
For n = 6: T(6 - r) + ... + T(5) = T(7) + ... + T(6 + r) is true for the least r = 4 because A010060(2) + A010060(3) + A010060(4) + A010060(5) = A010060(7) + A010060(8) + A010060(9) + A010060(10), thus a(6) = 4.
Programs
-
Mathematica
a[n_] := Module[{s = 0, r = 1}, While[r <= n && (r == 1 || s != 0), s += (ThueMorse[n - r] - ThueMorse[n + r]); r++]; r-1]; Array[a, 100, 2] (* Amiram Eldar, Aug 12 2025 *)
Comments