cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A386991 Numbers k such that k^2 + sopfr(k)^2 is a square, where sopfr = A001414.

Original entry on oeis.org

1, 8, 15, 35, 112, 143, 323, 899, 1763, 3599, 5183, 10403, 11663, 19043, 22499, 32399, 36863, 39203, 51983, 57599, 72899, 79523, 97343, 121103, 176399, 186623, 213443, 272483, 324899, 359999, 381923, 412163, 435599, 656099, 675683, 685583, 736163
Offset: 1

Views

Author

Robert Israel, Aug 12 2025

Keywords

Comments

Includes A037074 because if k = p*(p+2) where p and p+2 are primes, k^2 + sopfr(k)^2 = p^2*(p+2)^2 + (2*p+2)^2 = (p^2 + 2*p + 2)^2.
Are 1, 8 and 112 the only terms not in A037074?

Examples

			a(3) = 15 is a term because the sum of prime factors of 15 is 3+5 = 8 and 15^2 + 8^2 = 289 = 17^2.
		

Crossrefs

Cf. A001414, A386246. Includes A037074.

Programs

  • Maple
    sopfr:= proc(n) local t; add(t[1]*t[2],t=ifactors(n)[2]) end proc:
    filter:= t -> issqr(t^2 + sopfr(t)^2):
    select(filter, [$1..10^5]);
  • Mathematica
    Sopfr[1]=0;Sopfr[n_]:= Plus @@ Times @@@ FactorInteger@ n;Select[Range[500000],IntegerQ[Sqrt[#^2+Sopfr[#]^2]]&] (* James C. McMahon, Aug 14 2025 *)