A386991 Numbers k such that k^2 + sopfr(k)^2 is a square, where sopfr = A001414.
1, 8, 15, 35, 112, 143, 323, 899, 1763, 3599, 5183, 10403, 11663, 19043, 22499, 32399, 36863, 39203, 51983, 57599, 72899, 79523, 97343, 121103, 176399, 186623, 213443, 272483, 324899, 359999, 381923, 412163, 435599, 656099, 675683, 685583, 736163
Offset: 1
Keywords
Examples
a(3) = 15 is a term because the sum of prime factors of 15 is 3+5 = 8 and 15^2 + 8^2 = 289 = 17^2.
Links
- Robert Israel, Table of n, a(n) for n = 1..300
Programs
-
Maple
sopfr:= proc(n) local t; add(t[1]*t[2],t=ifactors(n)[2]) end proc: filter:= t -> issqr(t^2 + sopfr(t)^2): select(filter, [$1..10^5]);
-
Mathematica
Sopfr[1]=0;Sopfr[n_]:= Plus @@ Times @@@ FactorInteger@ n;Select[Range[500000],IntegerQ[Sqrt[#^2+Sopfr[#]^2]]&] (* James C. McMahon, Aug 14 2025 *)
Comments