This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A387002 #13 Aug 19 2025 16:37:52 %S A387002 1,2,12,6,140,320,19,1554,10368,13520,63,17622,265344,892864,786432, %T A387002 216,206747,6390484,41998840,89389920,58383808,760,2503578,152166240, %U A387002 1749529040,6773387520 %N A387002 Triangle read by rows: T(n,d) is the number of fixed, properly d-dimensional (d,2)-polyominoids of size n, 2 <= d <= n+1. %C A387002 A (d,2)-polyominoid consists of unit square cells with integer coordinates in the d-dimensional grid, where two cells are connected if they share an edge. The polyominoid is properly d-dimensional if it is not contained in a (d-1)-dimensional affine subspace. %H A387002 Wikipedia, <a href="https://en.wikipedia.org/wiki/Polyominoid">Polyominoid</a>. %H A387002 <a href="/index/Pol#polyominoes">Index entries for sequences related to polyominoes</a>. %F A387002 T(n,d) = Sum_{k=2..d} (-1)^(d-k)*binomial(d,k)*A385715(k,n), i.e., the n-th row is the inverse binomial transform of the n-th column of A385715 (with the convention that T(n,d) = A385715(d,n) = 0 when d <= 1). %e A387002 Triangle begins: %e A387002 n\d | 2 3 4 5 6 7 8 9 10 11 %e A387002 ----+------------------------------------------------------------------------- %e A387002 1 | 1 %e A387002 2 | 2 12 %e A387002 3 | 6 140 320 %e A387002 4 | 19 1554 10368 13520 %e A387002 5 | 63 17622 265344 892864 786432 %e A387002 6 | 216 206747 6390484 41998840 89389920 58383808 %e A387002 7 | 760 2503578 152166240 1749529040 6773387520 ? ? %e A387002 8 | 2725 31117536 3644734836 69246650605 ? ? ? ? %e A387002 9 | 9910 394953243 88344741448 ? ? ? ? ? ? %e A387002 10 | 36446 5098388985 ? ? ? ? ? ? ? ? %Y A387002 Cf. A001168 (column d=2), A195739 (polyominoes), A385582 (polysticks), A385715, A387004 (free). %K A387002 nonn,tabl,more,changed %O A387002 1,2 %A A387002 _Pontus von Brömssen_, Aug 14 2025