This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A387027 #18 Aug 19 2025 04:15:27 %S A387027 1,2,3,8,15,72,70,480,945,2800,2772,30240,30030,388080,386100,384384, %T A387027 765765,12972960,12932920,245044800,244432188,243877920,243374040, %U A387027 5587021440,5577321750,27841990176,27800803800,83288004800,83181770100,2409402996000,2406725881560 %N A387027 a(n) = lcm({1, 2, ..., n}) * (n + 1) / n for n > 0, a(0) = 1. %H A387027 Paolo Xausa, <a href="/A387027/b387027.txt">Table of n, a(n) for n = 0..2000</a> %F A387027 a(n) = A003418(n) * (n + 1) / n for n >= 1. %F A387027 a(n) = (n+1)*A002944(n). - _R. J. Mathar_, Aug 19 2025 %p A387027 A387027 := n -> local k; ifelse(n = 0, 1, ((n+1) * lcm(seq(k, k = 1..n))) / n): %p A387027 seq(A387027(n), n = 0..30); %t A387027 A387027[n_] := If[n == 0, 1, Quotient[(n + 1) LCM @@ Range[1, n], n]]; %t A387027 Table[A387027[n], {n, 0, 30}] %o A387027 (Python) %o A387027 from math import lcm %o A387027 def A387027(n): return (n+1)*lcm(*range(1,n+1))//n if n else 1 # _Chai Wah Wu_, Aug 17 2025 %Y A387027 Cf. A003418. %K A387027 nonn %O A387027 0,2 %A A387027 _Peter Luschny_, Aug 17 2025