This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A387029 #14 Aug 20 2025 11:14:42 %S A387029 0,0,12,38,88,198,332 %N A387029 Number of fundamental one-dimensional discrete statistical models with rational maximum likelihood estimator supported on n+1 states and of degree 2n-3. %C A387029 A143109 is likely an erroneous version of this sequence. %C A387029 Table 2 of Lebl and Lichtblau gives (incorrect) a(3)=11. %H A387029 C. Améndola, V. Nguyen and J. Oldekop, <a href="https://arxiv.org/abs/2507.18686">One-dimensional discrete models of maximum likelihood degree one</a>, arXiv:2507.18686 [math.ST] 2025. %H A387029 A. Bik and O. Marigliano, <a href="https://doi.org/10.1016/j.aam.2025.102928">Classifying one-dimensional discrete models with maximum likelihood degree one</a>, Adv. Appl. Math., 170 (2025), 102928. %H A387029 J. Lebl and D. Lichtblau, <a href="http://arxiv.org/abs/0808.0284">Uniqueness of certain polynomials constant on a hyperplane</a>, arXiv:0808.0284 [math.CV], 2008-2010. %e A387029 For n=3 there are a(3)=12 models supported on 3+1=4 states of degree 2*3-3=3. Encoding each model parametrization as a bivariate polynomial shows why the 4th term of A143109 is also 12. Concretely, the following polynomials in x,y with 4 terms and of degree 2*4-5=3 yield the constant 1 when making the substitution y=1-x: %e A387029 1. x + x^2*y + 2*x*y^2 + y^3, %e A387029 2. x + x^2*y + y^2 + x*y^2, %e A387029 3. x + x*y + x*y^2 + y^3, %e A387029 4. x^2 + 2*x^2*y + 3*x*y^2 + y^3, %e A387029 5. x^2 + 2*x^2*y + y^2 + 2*x*y^2, %e A387029 6. x^2 + 2*x*y + x*y^2 + y^3, %e A387029 7. x^2 + y + x^2*y + x*y^2, %e A387029 8. x^3 + 2*x*y + x^2*y + y^2, %e A387029 9. x^3 + 3*x^2*y + 3*x*y^2 + y^3, %e A387029 10. x^3 + 3*x^2*y + y^2 + 2*x*y^2, %e A387029 11. x^3 + y + 2*x^2*y + x*y^2, %e A387029 12. x^3 + y + x*y + x^2*y. %Y A387029 Cf. A143107, A143108, A143109, A386841. %K A387029 hard,nonn %O A387029 1,3 %A A387029 _Carlos Améndola_, Aug 05 2025