This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A387049 #14 Aug 18 2025 06:29:51 %S A387049 6,10,12,14,21,44,46,51,57,65,74,86,90,111,141,155,161,166,210,212, %T A387049 221,252,254,295,297,300,306,365,371,404,415,447,466,485,504,513,514, %U A387049 524,545,629,634,640,674,685,720,767,866,910,914,930,985,1020,1035,1062,1124,1135,1157,1189,1197,1214 %N A387049 Numbers k such that both k + sopfr(k) and k^2 + sopfr(k)^2 are prime, where sopfr = A001414. %C A387049 Includes 2*p if p is a prime such that 3*p + 2 and 5 * p^2 + 4 * p + 4 are prime. The Generalized Bunyakowsky Conjecture implies there are infinitely many of these. %H A387049 Robert Israel, <a href="/A387049/b387049.txt">Table of n, a(n) for n = 1..10000</a> %e A387049 a(3) = 12 is a term because sopfr(12) = 2*2 + 3 = 7 and both 12 + 7 = 19 and 12^2 + 7^2 = 193 are prime. %p A387049 sopfr:= proc(n) local t; add(t[1]*t[2], t=ifactors(n)[2]) end proc: %p A387049 filter:= proc(n) local s; s:= sopfr(n); isprime(n+s) and isprime(n^2 + s^2) end proc: %p A387049 select(filter, [$1..2000]); %t A387049 q[k_] := Module[{sopfr = Plus @@ Times @@@ FactorInteger[k]}, PrimeQ[k + sopfr] && PrimeQ[k^2 + sopfr^2]]; Select[Range[2, 1214], q] (* _Amiram Eldar_, Aug 14 2025 *) %Y A387049 Cf. A001414. Intersection of A050703 and A387048. %K A387049 nonn,new %O A387049 1,1 %A A387049 _Robert Israel_, Aug 14 2025