A387051 Number of entries in the n-th row of Pascal's triangle not divisible by 32.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 17, 34, 27, 36, 29, 38, 35, 40, 33, 42, 39, 44, 41, 46, 45, 48, 41, 50, 47, 52, 49, 54, 53, 56, 53, 58, 57, 60, 59, 62, 62, 64, 17, 34, 43, 68
Offset: 0
Keywords
Programs
-
Python
def A387051(n): n1 = n>>1 n2 = n1>>1 n3 = n2>>1 n4 = n3>>1 np = ~n n10, n100, n110 = (k1:=n1&np).bit_count(), (k2:=(k1>>1)&np).bit_count(), (k3:=n2&k1).bit_count() n1100, n1000, n1010, n1110 = (k5:=n3&k2).bit_count(), (k4:=(k2>>1)&np).bit_count(), (k6:=(k1>>2)&k1).bit_count(), (k7:=n3&k3).bit_count() n10000, n11000, n10100, n11100 = ((k4>>1)&np).bit_count(), (n4&k4).bit_count(), ((k6>>1)&np).bit_count(), (n4&k5).bit_count() n10010, n11010, n10110, n11110 = ((k2>>2)&k1).bit_count(), (n4&k6).bit_count(), ((k1>>3)&k3).bit_count(), (n4&k7).bit_count() c = n10*(n10*(n10*(n10+2)+((n100<<2)+n110)*12+35)+((((((n1000<<2)+n1010+n1100<<1)+n100<<1)+n1110<<1)+n110)*12+154))//24 c += n100*((n100<<1)+n110+1<<2)+(((n10000<<2)+n1000+n10010+n10100+n11000+1<<2)+n10110+n11010+n11100<<2)+n1110+n11110+(n110*(n110+5)>>1) return c<
>4