cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A387060 Numbers k such that 16 * 3^k + 1 is prime.

Original entry on oeis.org

0, 3, 4, 5, 12, 24, 36, 77, 195, 296, 297, 533, 545, 644, 884, 932, 1409, 2061, 2453, 2985, 3381, 4980, 5393, 11733, 13631, 14516, 21004, 27663, 32645, 39453, 67055, 90543
Offset: 1

Views

Author

Ken Clements, Aug 15 2025

Keywords

Comments

a(33) > 10^5.
Conjecture: The only intersection with A385115 is at k = 3 where 2^4 * 3^3 = 432 = A027856(8).
Idea: For odd k > 3, covering systems ensure mutual exclusion:
If k = 1, 9, 13, 19, 25, 31, 37, 39, 43, 49, 55 (mod 60), then 7 or 31 divides (16*3^k+1).
If k = 5, 7, 11, 17, 23, 27, 29, 35, 41, 47, 53, 57, 59 (mod 60), then 11 or 13 divides (16*3^k-1).
If k = 15, 21, 33, 45, 51 (mod 60), various primes including {11,31,43,109,277,433,...} ensure at least one of 16*3^k +- 1 is composite.
If k = 3 (mod 60) and k > 3, the probability of intersection becomes vanishingly small.
Only k = 3 escapes all divisibility conditions. Verified to k = 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 4000], PrimeQ[16*3^# + 1] &] (* Amiram Eldar, Aug 16 2025 *)
  • Python
    from gmpy2 import is_prime
    print([k for k in range(4_000) if is_prime(16 * 3**k + 1)])