This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A387077 #7 Aug 16 2025 01:17:50 %S A387077 2,5,11,17,24,31,44,52,57,73,76,115,126,144,189,207,236,287,310,320, %T A387077 368,453,479,652,667,674,678,684,809,821,832,837,996,1016,1034,1088, %U A387077 1206,1289,1425,1497,1532,2020,2026,2053,2079,2425,2442,2445,2522,2542,2578,2637 %N A387077 Indices of prime terms in A386482. %H A387077 Michael De Vlieger, <a href="/A387077/b387077.txt">Table of n, a(n) for n = 1..1030</a> %t A387077 Block[{c, j, k, m, p, r, nn}, %t A387077 nn = 3000; c[_] := False; m[_] := 1; j = 2; c[1] = c[2] = True; r = 1; %t A387077 {1}~Join~Monitor[Most@ Reap[Do[ %t A387077 If[PrimePowerQ[j], %t A387077 Set[{p, k, m}, {#1, #1^(#2 - 1), #1^(#2 - 1)}] & @@ %t A387077 FactorInteger[j][[1]]; While[And[c[k*p], k != 0], k--]; %t A387077 If[k == 0, k = m; While[c[k*p], k++]]; k *= p, %t A387077 k = j - 1; While[And[Or[c[k], CoprimeQ[j, k]], k != 1], k--]; %t A387077 If[k == 1, k += j; While[Or[c[k], CoprimeQ[j, k] ], k++] ] ]; %t A387077 If[PrimeQ[k], Sow[n]]; %t A387077 Set[{c[k], j}, {True, k}], {n, 3, nn}] ][[-1, 1]], n] ] %Y A387077 Cf. A386482, A387076. %K A387077 nonn %O A387077 1,1 %A A387077 _Michael De Vlieger_, Aug 15 2025