cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A387079 Least prime factor of A386482(n).

Original entry on oeis.org

1, 2, 2, 2, 3, 3, 2, 2, 2, 2, 7, 3, 2, 2, 2, 3, 5, 5, 2, 2, 2, 2, 2, 11, 3, 3, 2, 2, 2, 2, 19, 3, 2, 2, 2, 2, 2, 2, 2, 2, 5, 3, 3, 13, 5, 2, 2, 2, 7, 3, 3, 17, 2, 2, 2, 2, 31, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 3, 3, 23, 2, 2, 47, 3, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Michael De Vlieger, Aug 18 2025

Keywords

Comments

Minimum absolute difference |s(n-1)-s(n)|, since GCD(s(n-1),s(n)) > 1, where s = A386482.

Crossrefs

Programs

  • Mathematica
    Block[{c, j, k, p, m, nn}, nn = 120; c[] := False; m[] := 1; j = 2; c[1] = c[2] = True; {1, 2}~Join~Reap[Do[If[PrimePowerQ[j], Set[{p, k, m}, {#1, #1^(#2 - 1), #1^(#2 - 1)}] & @@ FactorInteger[j][[1]]; While[And[c[k*p], k != 0], k--];vIf[k == 0, k = m; While[c[k*p], k++]]; k *= p, k = j - 1; While[And[Or[c[k], CoprimeQ[j, k]], k != 1], k--]; If[k == 1, k += j; While[Or[c[k], CoprimeQ[j, k]], k++] ] ]; Sow[FactorInteger[k][[1, 1]] ]; Set[{c[k], j}, {True, k}], {n, 3, nn}]][[-1, 1]] ]

Formula

a(n) = A020639(A386482(n)).
a(n) <= |A386075(n-1)|.
a(m) = s(m) = A387073(i) for m = A387074(i).