A387103 For any n >= 2, a(n) is the number of positive values k < A386482(n-1) missing from the first n-1 terms of A386482 such that gcd(k, A386482(n-1)) != 1.
0, 0, 0, 1, 0, 0, 2, 2, 0, 1, 0, 2, 2, 0, 2, 1, 0, 0, 5, 3, 3, 1, 1, 0, 1, 0, 2, 2, 0, 1, 0, 6, 10, 8, 7, 6, 4, 2, 3, 1, 0, 1, 1, 0, 2, 4, 2, 1, 0, 1, 1, 0, 3, 3, 1, 1, 0, 8, 16, 11, 9, 11, 7, 7, 6, 3, 3, 2, 1, 0, 1, 1, 0, 0, 1, 0, 17, 31, 22, 20, 28, 24, 16
Offset: 2
Keywords
Examples
The first terms, alongside A386482(n) and the corresponding k's, are: n a(n) A386482(n) Candidates -- ---- ---------- -------------------- 1 N/A 1 N/A 2 0 2 {} 3 0 4 {} 4 0 6 {} 5 1 3 {3} 6 0 9 {} 7 0 12 {} 8 2 10 {8, 10} 9 2 8 {5, 8} 10 0 14 {} 11 1 7 {7} 12 0 21 {} 13 2 18 {15, 18} 14 2 16 {15, 16} 15 0 20 {} 16 2 15 {5, 15} 17 1 5 {5} 18 0 25 {} 19 0 30 {} 20 5 28 {22, 24, 26, 27, 28}
Links
- Rémy Sigrist, Table of n, a(n) for n = 2..10000
- Rémy Sigrist, Scatterplot of the candidates k for n = 2..1005
- Rémy Sigrist, PARI program
Crossrefs
Cf. A386482.
Programs
-
PARI
\\ See Links section.
Comments