cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A387130 a(n) is the number of complement pairs of imprimitive (periodic) 2n-bead balanced binary necklaces.

This page as a plain text file.
%I A387130 #29 Aug 27 2025 18:20:38
%S A387130 0,0,0,0,0,0,1,0,3,1,11,0,39,0,118,12,395,0,1372,0,4601,119,15986,0,
%T A387130 56662,11,199854,1337,716135,0,2589376,0,9391051,15987,34315811,129,
%U A387130 126096824,0,465062362,199855,1723071186,0,6408523001,0,23910175807,2586090,89493721076
%N A387130 a(n) is the number of complement pairs of imprimitive (periodic) 2n-bead balanced binary necklaces.
%C A387130 A386946(n) is the number of primitive 2n-bead balanced binary necklaces (corresponding to Lyndon words), and A115118 is the number of those that are self-complementary (i.e., can be rotated so that all beads change color). Their difference 2*a(n) is the number of those that are not self-complementary. a(n) is the number pairs of distinct complements.
%C A387130 Doubled entries: 0, 0, 0, 0, 0, 0, 2, 0, 6, 2, 22, 0, 78, 0, 236, 24, 790, 0, 2744, ...
%C A387130 Sequences counting 2n-bead balanced binary necklaces:
%C A387130                        primitive  imprimitive
%C A387130                      +-----------------------+---------+
%C A387130   self-complementary |  A000048     A115118  | A000013 |
%C A387130    complement pairs  |  A383904      this    | A386388 |
%C A387130                      +-----------------------+---------+
%C A387130                      |  A022553     A386946  | A003239 |
%C A387130                      +-----------------------+---------+
%H A387130 Tilman Piesk, <a href="/A387130/b387130.txt">Table of n, a(n) for n = 0..1000</a>
%F A387130 a(n) = (A386946(n) - A115118(n)) / 2.
%F A387130 a(n) = A386388(n) - A383904(n).
%e A387130   n | A386946(n) A115118(n) | 2*a(n)    a(n) | A386388(n) A383904(n)
%e A387130   0 |         0          0  |     0       0  |         0          0
%e A387130   1 |         0          0  |     0       0  |         0          0
%e A387130   2 |         1          1  |     0       0  |         0          0
%e A387130   3 |         1          1  |     0       0  |         1          1
%e A387130   4 |         2          2  |     0       0  |         3          3
%e A387130   5 |         1          1  |     0       0  |        11         11
%e A387130   6 |         5          3  |     2       1  |        36         35
%e A387130   7 |         1          1  |     0       0  |       118        118
%e A387130   8 |        10          4  |     6       3  |       395        392
%e A387130   9 |         4          2  |     2       1  |      1337       1336
%e A387130  10 |        27          5  |    22      11  |      4598       4587
%e A387130  11 |         1          1  |     0       0  |     15986      15986
%e A387130  12 |        88         10  |    78      39  |     56270      56231
%e A387130  13 |         1          1  |     0       0  |    199854     199854
%e A387130  14 |       247         11  |   236     118  |    716132     716014
%e A387130  15 |        29          5  |    24      12  |   2584754    2584742
%e A387130  16 |       810         20  |   790     395  |   9391051    9390656
%e A387130 Examples for n=8 with necklaces of length 16:
%e A387130 The total number of necklaces is A003239(8) = 810.
%e A387130 A022553(8) = 800 of them are primitive.
%e A387130 The other A386946(8) = 10 are periodic.
%e A387130 A115118(8) = 4 among those are self-complementary:
%e A387130  0000111100001111
%e A387130  0010110100101101
%e A387130  0011001100110011
%e A387130  0101010101010101
%e A387130 The remaining 6 necklaces form a(8) = 3 complement pairs:
%e A387130  0001011100010111 0001110100011101
%e A387130  0001101100011011 0010011100100111
%e A387130  0010101100101011 0011010100110101
%Y A387130 Cf. A386946, A115118, A386388, A383904.
%K A387130 nonn,new
%O A387130 0,9
%A A387130 _Tilman Piesk_, Aug 17 2025