A387147 Decimal expansion of the dihedral angle, in radians, between triangular and square faces in an elongated pentagonal pyramid (Johnson solid J_9).
2, 2, 2, 3, 1, 5, 4, 4, 6, 6, 5, 7, 9, 2, 6, 4, 8, 0, 5, 2, 2, 6, 7, 1, 2, 3, 2, 3, 2, 8, 3, 5, 7, 4, 0, 1, 6, 4, 6, 3, 8, 9, 2, 6, 1, 9, 6, 5, 0, 5, 3, 2, 6, 5, 2, 2, 8, 2, 2, 0, 0, 2, 4, 2, 8, 6, 0, 0, 5, 1, 7, 8, 6, 9, 6, 4, 1, 4, 4, 0, 3, 2, 2, 2, 3, 5, 8, 4, 5, 5
Offset: 1
Examples
2.2231544665792648052267123232835740164638926196505...
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000
- Wikipedia, Elongated pentagonal bipyramid.
- Wikipedia, Elongated pentagonal cupola.
- Wikipedia, Elongated pentagonal gyrobicupola.
- Wikipedia, Elongated pentagonal gyrocupolarotunda.
- Wikipedia, Elongated pentagonal orthobicupola.
- Wikipedia, Elongated pentagonal orthocupolarotunda.
- Wikipedia, Elongated pentagonal pyramid.
- Index entries for transcendental numbers.
Crossrefs
Programs
-
Mathematica
First[RealDigits[ArcCos[-Sqrt[(10 - Sqrt[20])/15]], 10, 100]] (* or *) First[RealDigits[RankedMax[Union[PolyhedronData["J9", "DihedralAngles"]], 2], 10, 100]]
-
PARI
acos(-sqrt((10 - sqrt(20))/15)) \\ Charles R Greathouse IV, Aug 19 2025
Formula
Equals arccos(-sqrt((10 - 2*sqrt[5])/15)) = arccos(-sqrt((10 - A010476)/15)).
Comments