This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A387152 #11 Aug 28 2025 17:26:34 %S A387152 1,0,1,0,1,1,0,1,2,1,0,2,3,3,1,0,6,7,6,4,1,0,24,23,16,10,5,1,0,120,98, %T A387152 57,30,15,6,1,0,720,514,257,115,50,21,7,1,0,5040,3204,1407,546,205,77, %U A387152 28,8,1,0,40320,23148,9076,3109,1021,336,112,36,9,1 %N A387152 Array read by ascending antidiagonals: A(n, k) = Sum_{j=0..n} binomial(k, j)*|Stirling1(n, j)|. %F A387152 T(n, k) = n! * [x^n] Laguerre(k, log(1 - x)). %F A387152 From _Natalia L. Skirrow_, Aug 27 2025: (Start) %F A387152 D-finite with T(n,k) = (n-1)*T(n-1,k)+T(n,k-1)-(n-2)*T(n-1,k-1). %F A387152 O.g.f.: hypergeom([1,y/(1-y)],[],x)/(1-y). %F A387152 Row o.g.f.: (y/(1-y))_n/(1-y), where (x)_n is the Pochhammer symbol/rising factorial. %F A387152 Row o.g.f. is also 0^n + y/(1-y)^(n+1)*Prod_{j=1..n-2}(j+1-j*y). %F A387152 E.g.f.: 1/((1-y)*(1-x)^(y/(1-y))). %F A387152 Column e.g.f.: hypergeom([-k],[1],log(1-y)). %F A387152 T(n,k) = [x^k] (1+x)^k*(x)_n. %F A387152 (End) %e A387152 Array begins: %e A387152 [0] 1, 1, 1, 1, 1, 1, 1, ... %e A387152 [1] 0, 1, 2, 3, 4, 5, 6, ... %e A387152 [2] 0, 1, 3, 6, 10, 15, 21, ... %e A387152 [3] 0, 2, 7, 16, 30, 50, 77, ... %e A387152 [4] 0, 6, 23, 57, 115, 205, 336, ... %e A387152 [5] 0, 24, 98, 257, 546, 1021, 1750, ... %e A387152 [6] 0, 120, 514, 1407, 3109, 6030, 10696, ... %e A387152 [7] 0, 720, 3204, 9076, 20695, 41330, 75356, ... %e A387152 [8] 0, 5040, 23148, 67456, 157865, 323005, 602517, ... %e A387152 [9] 0, 40320, 190224, 567836, 1358564, 2837549, 5396650, ... %p A387152 A := (n, k) -> add(binomial(k, j)*abs(Stirling1(n, j)), j = 0..n): %p A387152 seq(seq(A(n-k, k), k = 0..n), n = 0..10); %p A387152 # Expanding rows or columns: %p A387152 RowSer := n -> series((1+x)^k*GAMMA(x + n)/GAMMA(x), x, 12): %p A387152 Trow := n -> k -> coeff(RowSer(n), x, k): %p A387152 ColSer := n -> series(orthopoly:-L(n, log(1 - x)), x, 12): %p A387152 Tcol := k -> n -> n! * coeff(ColSer(k), x, n): %p A387152 seq(lprint(seq(Trow(n)(k), k = 0..7)), n = 0..9); %p A387152 seq(lprint(seq(Tcol(k)(n), n = 0..7)), k = 0..9); %o A387152 (Python) %o A387152 from functools import cache %o A387152 @cache %o A387152 def T(n: int, k: int) -> int: %o A387152 if n == 0: return 1 %o A387152 if k == 0: return 0 %o A387152 return (n - 1) * T(n - 1, k) + T(n, k - 1) - (n - 2) * T(n - 1, k - 1) %o A387152 for n in range(7): print([T(n, k) for k in range(7)]) %Y A387152 Rows: A000012 [0], A001477 [1], A000217 [2], A005581 [3], A387204 [4]. %Y A387152 Columns: A000007 [0], A000142 [shifted, 1], A387205 [2]. %Y A387152 Contains A271700 in transpose. %Y A387152 Cf. A211210 (main diagonal), A130534. %K A387152 nonn,tabl,new %O A387152 0,9 %A A387152 _Peter Luschny_, Aug 27 2025