A387153 Squarefree 3-abundant numbers: squarefree numbers k such that A000203(k) > 3*k.
30030, 39270, 43890, 46410, 51870, 53130, 62790, 66990, 67830, 71610, 79170, 82110, 84630, 85470, 91770, 94710, 99330, 101010, 103530, 108570, 111930, 117390, 122430, 128310, 136290, 140910, 144690, 154770, 161070, 164010, 166530, 168630, 182490, 191730, 205590
Offset: 1
Examples
30030 = 2 * 3 * 5 * 7 * 11 * 13 is a term since it is squarefree, and sigma(30030) = 96768 > 3*30030 = 90090.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
q[k_] := Module[{f = FactorInteger[k]}, Max[f[[;;, 2]]] == 1 && Times @@ (1 + f[[;; , 1]]) > 3*k]; Select[Range[2*10^5], q]
-
PARI
isok(k) = {my(f = factor(k)); issquarefree(f) && vecprod(apply(x -> x+1, f[, 1])) > 3*k;}
Formula
A001221(a(n)) >= 6.
Comments