A387154 The least number k that is not n-free whose sum of n-free divisors is larger than 2*k.
401120980260, 360360, 55440, 110880, 100800, 120960, 241920, 483840, 967680, 1935360, 3870720, 7741440, 15482880, 30965760, 61931520, 123863040, 247726080, 495452160, 990904320, 1981808640, 3963617280, 7927234560, 15854469120, 31708938240, 63417876480, 126835752960
Offset: 2
Examples
For n = 2, the numbers k such that A048250(k) > 2*k include all the squarefree abundant numbers (A087248). The least nonsquarefree number (A013929) k such that A048250(k) > 2*k is 401120980260 = 2^2*3*5*7*11*13*17*19*23*29*31. For n = 3, the numbers k such that A073185(k) > 2*k include all the cubefree abundant numbers (A357695). The least noncubefree number (A046099) k such that A073185(k) > 2*k is A357700(1) = 360360 = 2^3*3^2*5*7*11*13.
Links
- Amiram Eldar, Table of n, a(n) for n = 2..1000
Crossrefs
Programs
-
Mathematica
a[n_] := If[n < 7, {401120980260, 360360, 55440, 110880, 100800}[[n-1]], 945 * 2^n]; Array[a, 26, 2]
-
PARI
a(n) = if(n < 7, [401120980260, 360360, 55440, 110880, 100800][n-1], 945 * 2^n);
Formula
a(n) = 945 * 2^n for n >= 7.
Comments