cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A387115 Number of ways to choose a sequence of distinct strict integer partitions, one of each prime index of n.

Original entry on oeis.org

1, 1, 1, 0, 2, 1, 2, 0, 0, 2, 3, 0, 4, 2, 2, 0, 5, 0, 6, 0, 2, 3, 8, 0, 2, 4, 0, 0, 10, 2, 12, 0, 3, 5, 4, 0, 15, 6, 4, 0, 18, 2, 22, 0, 0, 8, 27, 0, 2, 2, 5, 0, 32, 0, 6, 0, 6, 10, 38, 0, 46, 12, 0, 0, 8, 3, 54, 0, 8, 4, 64, 0, 76, 15, 2, 0, 6, 4, 89, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Aug 20 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The axiom of choice says that, given any sequence of nonempty sets, it is possible to choose a sequence containing an element from each. In the strict version, the elements of this sequence must be distinct, meaning none is chosen more than once.

Examples

			The prime indices of 15 are (2,3), and there are a(15) = 2 choices:
  ((2),(3))
  ((2),(2,1))
The prime indices of 121 are (5,5), and there are a(121) = 6 choices:
  ((5),(4,1))
  ((5),(3,2))
  ((4,1),(5))
  ((4,1),(3,2))
  ((3,2),(5))
  ((3,2),(4,1))
		

Crossrefs

For divisors instead of partitions we have A355739, see A355740, A355733, A355734.
Allowing repeated partitions gives A357982, see A299200, A357977, A357978.
Twice-partitions of this type are counted by A358914, strict case of A270995.
The disjoint case is A383706.
Allowing non-strict partitions gives A387110, for prime factors A387133.
For initial intervals instead of strict partitions we have A387111.
For constant instead of strict partitions we have A387120.
Positions of 0 are A387176 (non-choosable), complement A387177 (choosable).
A000041 counts integer partitions, strict A000009.
A003963 multiplies together the prime indices of n.
A112798 lists prime indices, row sums A056239 or A066328, lengths A001222.
A120383 lists numbers divisible by all of their prime indices.
A289509 lists numbers with relatively prime prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Tuples[Select[IntegerPartitions[#],UnsameQ@@#&]&/@prix[n]],UnsameQ@@#&]],{n,100}]

A387112 Numbers with (strictly) choosable initial intervals of prime indices.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 51, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95
Offset: 1

Views

Author

Gus Wiseman, Aug 23 2025

Keywords

Comments

First differs from A371088 in having a(86) = 121.
The initial interval of a nonnegative integer x is the set {1,...,x}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We say that a set or sequence of nonempty sets is choosable iff it is possible to choose a different element from each set. For example, ({1,2},{1},{1,3}) is choosable because we have the choice (2,1,3), but ({1,2,3},{1},{1,3},{2}) is not.
This sequence lists all numbers k such that if the prime indices of k are (x1,x2,...,xz), then the sequence of sets (initial intervals) ({1,...,x1},{1,...,x2},...,{1,...,xz}) is choosable.

Examples

			The prime indices of 85 are {3,7}, with initial intervals {{1,2,3},{1,2,3,4,5,6,7}}, which are choosable, so 85 is in the sequence
The prime indices of 90 are {1,2,2,3}, with initial intervals {{1},{1,2},{1,2},{1,2,3}}, which are not choosable, so 90 is not in the sequence.
		

Crossrefs

Partitions of this type are counted by A238873, complement A387118.
For partitions instead of initial intervals we have A276078, complement A276079.
For prime factors instead of initial intervals we have A368100, complement A355529.
For divisors instead of initial intervals we have A368110, complement A355740.
These are all the positions of nonzero terms in A387111, complement A387134.
The complement is A387113.
For strict partitions instead of initial intervals we have A387176, complement A387137.
A061395 gives greatest prime index, least A055396.
A112798 lists prime indices, row sums A056239 or A066328, lengths A001222.
A120383 lists numbers divisible by all of their prime indices.
A367902 counts choosable set-systems, complement A367903.
A370582 counts sets with choosable prime factors, complement A370583.
A370585 counts maximal subsets with choosable prime factors.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Select[Tuples[Range/@prix[#]],UnsameQ@@#&]!={}&]

A387113 Numbers whose prime indices do not have (strictly) choosable initial intervals.

Original entry on oeis.org

4, 8, 12, 16, 18, 20, 24, 27, 28, 32, 36, 40, 44, 48, 52, 54, 56, 60, 64, 68, 72, 76, 80, 81, 84, 88, 90, 92, 96, 100, 104, 108, 112, 116, 120, 124, 126, 128, 132, 135, 136, 140, 144, 148, 150, 152, 156, 160, 162, 164, 168, 172, 176, 180, 184, 188, 189, 192
Offset: 1

Views

Author

Gus Wiseman, Aug 24 2025

Keywords

Comments

The initial interval of a nonnegative integer x is the set {1,...,x}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We say that a set or sequence of nonempty sets is choosable iff it is possible to choose a different element from each set. For example, ({1,2},{1},{1,3}) is choosable because we have the choice (2,1,3), but ({1,2,3},{1},{1,3},{2}) is not.
This sequence lists all numbers k such that if the prime indices of k are (x1,x2,...,xz), then the sequence of sets (initial intervals) ({1,...,x1},{1,...,x2},...,{1,...,xz}) is not choosable.

Examples

			The prime indices of 18 are {1,2,2}, with initial intervals ({1},{1,2},{1,2}), which have choices (1,1,1), (1,1,2), (1,2,1), (1,2,2), and since none of these are strict, 18 is in the sequence.
The prime indices of 85 are {3,7}, with initial intervals {{1,2,3},{1,2,3,4,5,6,7}}, which are choosable, so 85 is in not the sequence.
The prime indices of 90 are {1,2,2,3}, with initial intervals {{1},{1,2},{1,2},{1,2,3}}, which are not choosable, so 90 is in the sequence.
The terms together with their prime indices begin:
    4: {1,1}
    8: {1,1,1}
   12: {1,1,2}
   16: {1,1,1,1}
   18: {1,2,2}
   20: {1,1,3}
   24: {1,1,1,2}
   27: {2,2,2}
   28: {1,1,4}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   40: {1,1,1,3}
   44: {1,1,5}
   48: {1,1,1,1,2}
   52: {1,1,6}
   54: {1,2,2,2}
   56: {1,1,1,4}
   60: {1,1,2,3}
   64: {1,1,1,1,1,1}
		

Crossrefs

For partitions instead of initial intervals we have A276079, complement A276078.
For prime factors instead of initial intervals we have A355529, complement A368100.
For divisors instead of initial intervals we have A355740, complement A368110.
These are the positions of 0 in A387111, complement A387134.
The complement is A387112.
Partitions of this type are counted by A387118, complement A238873.
For strict partitions instead of initial intervals we have A387137, complement A387176.
A061395 gives greatest prime index, least A055396.
A112798 lists prime indices, row sums A056239 or A066328, lengths A001222.
A120383 lists numbers divisible by all of their prime indices.
A367902 counts choosable set-systems, complement A367903.
A370582 counts sets with choosable prime factors, complement A370583.
A370585 counts maximal subsets with choosable prime factors.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Select[Tuples[Range/@prix[#]],UnsameQ@@#&]=={}&]

A387177 Numbers whose prime indices have choosable sets of strict integer partitions. Positions of nonzero terms in A387115.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 49, 50, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 98
Offset: 1

Views

Author

Gus Wiseman, Aug 29 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We say that a sequence of nonempty sets is choosable iff it is possible to choose a different element from each set. For example, ({1,2},{1},{1,3}) is choosable because we have the choice (2,1,3), but ({1},{2},{1,3},{2,3}) is not.

Examples

			The prime indices of 50 are {1,3,3}, and {(1),(3),(2,1)} is a valid choice of distinct strict partitions, so 50 is in the sequence.
		

Crossrefs

The version for all partitions appears to be A276078, counted by A052335.
The complement for all partitions appears to be A276079, counted by A387134.
The complement for divisors is A355740, counted by A370320.
Twice-partitions of this type (into distinct strict partitions) are counted by A358914.
The version for divisors is A368110, counted by A239312.
The version for initial intervals is A387112, counted by A238873, see A387111.
The complement for initial intervals is A387113, counted by A387118.
These are the positions of nonzero terms in A387115.
The complement is A387176.
Partitions of this type are counted by A387178, complement A387137.
The complement for constant partitions is A387180, counted by A387329, see A387120.
The version for constant partitions is A387181, counted by A387330.
A000041 counts integer partitions, strict A000009.
A003963 multiplies together the prime indices of n.
A112798 lists prime indices, row sums A056239 or A066328, lengths A001222.
A289509 lists numbers with relatively prime prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    strptns[n_]:=Select[IntegerPartitions[n],UnsameQ@@#&];
    Select[Range[100],Select[Tuples[strptns/@prix[#]],UnsameQ@@#&]!={}&]

A387180 Numbers of which it is not possible to choose a different constant integer partition of each prime index.

Original entry on oeis.org

4, 8, 12, 16, 20, 24, 27, 28, 32, 36, 40, 44, 48, 52, 54, 56, 60, 64, 68, 72, 76, 80, 81, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 125, 128, 132, 135, 136, 140, 144, 148, 152, 156, 160, 162, 164, 168, 172, 176, 180, 184, 188, 189, 192, 196, 200, 204
Offset: 1

Views

Author

Gus Wiseman, Aug 30 2025

Keywords

Comments

First differs from A276079 in having 125.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also numbers n with at least one prime index k such that the multiplicity of prime(k) in the prime factorization of n exceeds the number of divisors of k.

Examples

			The prime indices of 60 are {1,1,2,3}, and we have the following 4 choices of constant partitions:
  ((1),(1),(2),(3))
  ((1),(1),(2),(1,1,1))
  ((1),(1),(1,1),(3))
  ((1),(1),(1,1),(1,1,1))
Since none of these is strict, 60 is in the sequence.
The prime indices of 90 are {1,2,2,3}, and we have the following 4 strict choices:
  ((1),(2),(1,1),(3))
  ((1),(2),(1,1),(1,1,1))
  ((1),(1,1),(2),(3))
  ((1),(1,1),(2),(1,1,1))
So 90 is not in the sequence.
		

Crossrefs

For prime factors instead of constant partitions we have A355529, counted by A370593.
For divisors instead of constant partitions we have A355740, counted by A370320.
The complement for prime factors is A368100, counted by A370592.
The complement for divisors is A368110, counted by A239312.
The complement for initial intervals is A387112, counted by A238873.
For initial intervals instead of partitions we have A387113, counted by A387118.
These are the positions of zero in A387120.
For strict instead of constant partitions we have A387176, counted by A387137.
The complement for strict partitions is A387177, counted by A387178.
Twice-partitions of this type are counted by A387179, constant-block case of A296122.
The complement is A387181 (nonzeros of A387120), counted by A387330.
Partitions of this type are counted by A387329.
A000041 counts integer partitions, strict A000009.
A003963 multiplies together prime indices.
A112798 lists prime indices, row sums A056239 or A066328, lengths A001222.
A120383 lists numbers divisible by all of their prime indices.
A289509 lists numbers with relatively prime prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Select[Tuples[Select[IntegerPartitions[#],SameQ@@#&]&/@prix[#]],UnsameQ@@#&]=={}&]
Showing 1-5 of 5 results.