This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A387179 #12 Sep 09 2025 18:26:33 %S A387179 1,1,2,4,7,11,18,28,48,69,105,158,240,343,503,720,1041,1459,2062,2874, %T A387179 4047,5547,7656,10472,14322,19360,26214,35192,47354,63030,83992, %U A387179 111258,147360,193804,254907,333553,436319,567673,738197,956049,1237453,1594700,2053361 %N A387179 Number of twice-partitions of n into distinct constant partitions. %C A387179 A twice-partition of n (A063834) is a sequence of integer partitions, one of each part of an integer partition of n. %H A387179 Alois P. Heinz, <a href="/A387179/b387179.txt">Table of n, a(n) for n = 0..5000</a> %e A387179 The a(1) = 1 through a(6) = 18 twice-partitions counted by this sequence: %e A387179 (1) (2) (3) (4) (5) (6) %e A387179 (11) (111) (22) (3)(2) (33) %e A387179 (2)(1) (1111) (4)(1) (222) %e A387179 (11)(1) (3)(1) (11111) (4)(2) %e A387179 (11)(2) (22)(1) (5)(1) %e A387179 (2)(11) (3)(11) (22)(2) %e A387179 (111)(1) (111)(2) (4)(11) %e A387179 (111)(11) (111111) %e A387179 (1111)(1) (111)(3) %e A387179 (11)(2)(1) (22)(11) %e A387179 (2)(11)(1) (3)(111) %e A387179 (1111)(2) %e A387179 (3)(2)(1) %e A387179 (1111)(11) %e A387179 (11111)(1) %e A387179 (3)(11)(1) %e A387179 (111)(2)(1) %e A387179 (111)(11)(1) %p A387179 b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(j!* %p A387179 binomial(numtheory[tau](i), j)*b(n-i*j, i-1), j=0..n/i))) %p A387179 end: %p A387179 a:= n-> b(n$2): %p A387179 seq(a(n), n=0..45); # _Alois P. Heinz_, Sep 08 2025 %t A387179 twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}]; %t A387179 Table[Length[Select[twiptn[n],UnsameQ@@#&&And@@SameQ@@@#&]],{n,0,10}] %Y A387179 The non-distinct version is A279784. %Y A387179 Dominates the case of distinct block-sums A279786. %Y A387179 This is the constant-block case of A296122. %Y A387179 For strict instead of constant partitions we have A358914. %Y A387179 A000041 counts integer partitions, strict A000009. %Y A387179 A047968 counts constant twice-partitions. %Y A387179 A063834 counts twice-partitions. %Y A387179 Cf. A387120, zeros A387180 (counted by A387329), nonzeros A387181 (counted by A387330). %Y A387179 Cf. A000005, A006906, A007425, A261049, A270995, A299200, A299201, A355739, A387110. %K A387179 nonn,new %O A387179 0,3 %A A387179 _Gus Wiseman_, Sep 07 2025 %E A387179 More terms from _Alois P. Heinz_, Sep 08 2025