cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A387120 Number of ways to choose a different constant integer partition of each prime index of n.

Original entry on oeis.org

1, 1, 2, 0, 2, 2, 3, 0, 2, 2, 2, 0, 4, 3, 4, 0, 2, 2, 4, 0, 6, 2, 3, 0, 2, 4, 0, 0, 4, 4, 2, 0, 4, 2, 6, 0, 6, 4, 8, 0, 2, 6, 4, 0, 4, 3, 4, 0, 6, 2, 4, 0, 5, 0, 4, 0, 8, 4, 2, 0, 6, 2, 6, 0, 8, 4, 2, 0, 6, 6, 6, 0, 4, 6, 4, 0, 6, 8, 4, 0, 0, 2, 2, 0, 4, 4, 8
Offset: 1

Views

Author

Gus Wiseman, Aug 26 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 90 are {1,2,2,3}, with choices:
  ((1),(2),(1,1),(3))
  ((1),(1,1),(2),(3))
  ((1),(2),(1,1),(1,1,1))
  ((1),(1,1),(2),(1,1,1))
so a(90) = 4.
		

Crossrefs

For multiset systems see A355529, set systems A367901.
For not necessarily different choices we have A355731, see A355740.
For divisors instead of constant partitions we have A355739 (also the disjoint case).
For prime factors instead of constant partitions we have A387136.
For all instead of just constant partitions we have A387110, disjoint case A383706.
For initial intervals instead of partitions we have A387111.
For strict instead of constant partitions we have A387115.
Twice partitions of this type are counted by A387179, constant-block case of A296122.
Positions of zero are A387180 (non-choosable), complement A387181 (choosable).
A000041 counts integer partitions, strict A000009.
A003963 multiplies together prime indices.
A112798 lists prime indices, row sums A056239 or A066328, lengths A001222.
A120383 lists numbers divisible by all of their prime indices.
A289509 lists numbers with relatively prime prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Tuples[Select[IntegerPartitions[#],SameQ@@#&]&/@prix[n]],UnsameQ@@#&]],{n,100}]

A387181 Heinz numbers of integer partitions with no part k appearing more than A000005(k) times.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 51, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 109, 110, 111, 113, 114, 115, 117, 118, 119, 121, 122, 123, 126
Offset: 1

Views

Author

Gus Wiseman, Sep 04 2025

Keywords

Comments

First differs from A276078 in lacking 125.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
Also numbers of which it is possible to choose a different constant integer partition of each prime index. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 60 are {1,1,2,3}, and we have the following 4 choices of constant partitions:
  ((1),(1),(2),(3))
  ((1),(1),(2),(1,1,1))
  ((1),(1),(1,1),(3))
  ((1),(1),(1,1),(1,1,1))
Since none of these is strict, 60 is not in the sequence.
The prime indices of 90 are {1,2,2,3}, and we have the following 4 strict choices:
  ((1),(2),(1,1),(3))
  ((1),(2),(1,1),(1,1,1))
  ((1),(1,1),(2),(3))
  ((1),(1,1),(2),(1,1,1))
So 90 is in the sequence.
		

Crossrefs

The complement for divisors is A355740, counted by A370320.
The complement for prime factors is A355529, counted by A370593.
For prime factors instead of constant partitions we have A368100, counted by A370592.
For divisors instead of constant partitions we have A368110, counted by A239312.
These are all positions of nonzero terms in A387120.
The complement for strict partitions is A387176, counted by A387137.
For strict instead of constant partitions we have A387177, counted by A387178.
Twice-partitions of this type are counted by A387179, constant-block case of A296122.
The complement is A387180, counted by A387329.
Partitions of this type are counted by A387330.
A000041 counts integer partitions, strict A000009.
A003963 multiplies together prime indices.
A112798 lists prime indices, row sums A056239 or A066328, lengths A001222.
A120383 lists numbers divisible by all of their prime indices.
A289509 lists numbers with relatively prime prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Select[Tuples[Select[IntegerPartitions[#],SameQ@@#&]&/@prix[#]],UnsameQ@@#&]!={}&]
    - or -
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],And@@Table[Count[prix[#],k]<=DivisorSigma[0,k],{k,Union[prix[#]]}]&]

A387180 Numbers of which it is not possible to choose a different constant integer partition of each prime index.

Original entry on oeis.org

4, 8, 12, 16, 20, 24, 27, 28, 32, 36, 40, 44, 48, 52, 54, 56, 60, 64, 68, 72, 76, 80, 81, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 125, 128, 132, 135, 136, 140, 144, 148, 152, 156, 160, 162, 164, 168, 172, 176, 180, 184, 188, 189, 192, 196, 200, 204
Offset: 1

Views

Author

Gus Wiseman, Aug 30 2025

Keywords

Comments

First differs from A276079 in having 125.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also numbers n with at least one prime index k such that the multiplicity of prime(k) in the prime factorization of n exceeds the number of divisors of k.

Examples

			The prime indices of 60 are {1,1,2,3}, and we have the following 4 choices of constant partitions:
  ((1),(1),(2),(3))
  ((1),(1),(2),(1,1,1))
  ((1),(1),(1,1),(3))
  ((1),(1),(1,1),(1,1,1))
Since none of these is strict, 60 is in the sequence.
The prime indices of 90 are {1,2,2,3}, and we have the following 4 strict choices:
  ((1),(2),(1,1),(3))
  ((1),(2),(1,1),(1,1,1))
  ((1),(1,1),(2),(3))
  ((1),(1,1),(2),(1,1,1))
So 90 is not in the sequence.
		

Crossrefs

For prime factors instead of constant partitions we have A355529, counted by A370593.
For divisors instead of constant partitions we have A355740, counted by A370320.
The complement for prime factors is A368100, counted by A370592.
The complement for divisors is A368110, counted by A239312.
The complement for initial intervals is A387112, counted by A238873.
For initial intervals instead of partitions we have A387113, counted by A387118.
These are the positions of zero in A387120.
For strict instead of constant partitions we have A387176, counted by A387137.
The complement for strict partitions is A387177, counted by A387178.
Twice-partitions of this type are counted by A387179, constant-block case of A296122.
The complement is A387181 (nonzeros of A387120), counted by A387330.
Partitions of this type are counted by A387329.
A000041 counts integer partitions, strict A000009.
A003963 multiplies together prime indices.
A112798 lists prime indices, row sums A056239 or A066328, lengths A001222.
A120383 lists numbers divisible by all of their prime indices.
A289509 lists numbers with relatively prime prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Select[Tuples[Select[IntegerPartitions[#],SameQ@@#&]&/@prix[#]],UnsameQ@@#&]=={}&]
Showing 1-3 of 3 results.