This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A387203 #9 Aug 28 2025 00:43:03 %S A387203 2,1,1,2,2,6,3,3,2,1,5,7,1,6,2,10,5,2,8,4,2,1,7,6,4,11,2,13,8,2,7,7,4, %T A387203 7,20,9,11,2,9,8,19,2,6,6,21,20,1,2,2,18,9,9,16,3,21,12,3,12,2,27,11, %U A387203 10,18,3,34,13,17,2,8,23,12,5,18,2,22,11,24,15,26,15,6,22,27,2,31,4,2 %N A387203 Number of additively indecomposable elements in the real quadratic field Q(sqrt(D)) up to multiplication by totally positive units, where D = A005117(n) is the n-th squarefree number. %C A387203 For any totally real field K, an additively indecomposable element of K is a totally positive element in the maximal order of K which cannot be written as the sum of two totally positive integral elements of K. Here, an element x of K is totally positive if all conjugates of x are positive real numbers. %C A387203 Let K = Q(sqrt(D)) be a real quadratic field. By studying the continued fraction expansion of sqrt(D), Dress and Scharlau classified all additively indecomposable elements of K and showed that every such indecomposable element has its norm bounded by the discriminant of K. %H A387203 Andreas Dress and Rudolf Scharlau, <a href="https://doi.org/10.1016/0022-314X(82)90064-6">Indecomposable totally positive numbers in real quadratic orders</a>, J. Number Theory 14 (1982), no. 3, 292-306. %H A387203 Se Wook Jang and Byeong Moon Kim, <a href="https://doi.org/10.1016/j.jnt.2015.06.003">A refinement of the Dress-Scharlau theorem</a>, J. Number Theory 158 (2016), 234-243. %H A387203 Vítězslav Kala, <a href="https://doi.org/10.1016/j.jnt.2016.02.022">Norms of indecomposable integers in real quadratic fields</a>, J. Number Theory 166 (2016), 193-207. %H A387203 Vítězslav Kala, <a href="https://doi.org/10.46298/cm.10896">Universal quadratic forms and indecomposables in number fields: a survey</a>, Commun. Math. 31 (2023), no. 2, 81-114. %H A387203 Magdaléna Tinková and Paul Voutier, <a href="https://doi.org/10.1016/j.jnt.2019.11.005">Indecomposable integers in real quadratic fields</a>, J. Number Theory 212 (2020), 458-482. %e A387203 For n = 2, every additively indecomposable element in Q(sqrt(A005117(2))) = Q(sqrt(2)) is of the form u or u*(2 + sqrt(2)), for some totally positive unit u. Thus a(2) = 2. %e A387203 For n = 3, every additively indecomposable element in Q(sqrt(A005117(3))) = Q(sqrt(3)) is a totally positive unit, so a(3) = 1. %e A387203 For n = 4, every additively indecomposable element in Q(sqrt(A005117(4))) = Q(sqrt(5)) is a totally positive unit, so a(4) = 1. %e A387203 For n = 5, every additively indecomposable element in Q(sqrt(A005117(5))) = Q(sqrt(6)) is of the form u or u*(3 + sqrt(6)), for some totally positive unit u. Thus a(5) = 2. %o A387203 (SageMath) %o A387203 def a(n): %o A387203 D = [d for d in range(2*n) if Integer(d).is_squarefree()][n-1] %o A387203 K.<a> = QuadraticField(D); OK = K.ring_of_integers(); ans = 0 %o A387203 if (D%4==1): cf, d = continued_fraction((a-1)/2), (a+1)/2 %o A387203 else: cf, d = continued_fraction(a), a %o A387203 s = len(cf.period()) %o A387203 ai = [1]+[c.numer() + c.denom()*d for c in cf.convergents()[:2*s+1]] %o A387203 ind = [ai[i]+t*ai[i+1] for i in range(0,2*s+1,2) for t in range(cf[i+1])] %o A387203 for i in range(len(ind)): %o A387203 for j in range(i): %o A387203 if ((ind[i]/ind[j]) in OK) and (OK(ind[i]/ind[j]).is_unit()): break %o A387203 else: ans += 1 %o A387203 return ans %Y A387203 Cf. A005117, A035015, A387207. %K A387203 nonn,new %O A387203 2,1 %A A387203 _Robin Visser_, Aug 21 2025