cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A387207 The maximal norm of an additively indecomposable element in the real quadratic field Q(sqrt(D)), where D = A005117(n) is the n-th squarefree number.

This page as a plain text file.
%I A387207 #6 Sep 01 2025 18:27:43
%S A387207 2,1,1,3,2,10,5,3,2,1,4,9,1,11,2,26,7,6,10,4,2,1,9,19,13,10,7,21,9,2,
%T A387207 25,13,9,7,58,29,15,2,16,33,33,3,14,10,18,74,1,3,2,82,41,21,43,13,22,
%U A387207 30,7,18,5,24,25,51,34,4,106,53,27,11,37,28,57,9,59,2,122,61,42,16,130,65,11
%N A387207 The maximal norm of an additively indecomposable element in the real quadratic field Q(sqrt(D)), where D = A005117(n) is the n-th squarefree number.
%C A387207 For any totally real field K, an additively indecomposable element of K is a totally positive element in the maximal order of K which cannot be written as the sum of two totally positive integral elements of K.  Here, an element x of K is totally positive if all conjugates of x are positive real numbers.
%C A387207 Let K = Q(sqrt(D)) be a real quadratic field. By studying the continued fraction expansion of sqrt(D), Dress and Scharlau classified all additively indecomposable elements of K and showed that every such indecomposable element has its norm bounded by the discriminant of K.
%H A387207 Andreas Dress and Rudolf Scharlau, <a href="https://doi.org/10.1016/0022-314X(82)90064-6">Indecomposable totally positive numbers in real quadratic orders</a>, J. Number Theory 14 (1982), no. 3, 292-306.
%H A387207 Se Wook Jang and Byeong Moon Kim, <a href="https://doi.org/10.1016/j.jnt.2015.06.003">A refinement of the Dress-Scharlau theorem</a>, J. Number Theory 158 (2016), 234-243.
%H A387207 Vítězslav Kala, <a href="https://doi.org/10.1016/j.jnt.2016.02.022">Norms of indecomposable integers in real quadratic fields</a>, J. Number Theory 166 (2016), 193-207.
%H A387207 Vítězslav Kala, <a href="https://doi.org/10.46298/cm.10896">Universal quadratic forms and indecomposables in number fields: a survey</a>, Commun. Math. 31 (2023), no. 2, 81-114.
%H A387207 Magdaléna Tinková and Paul Voutier, <a href="https://doi.org/10.1016/j.jnt.2019.11.005">Indecomposable integers in real quadratic fields</a>, J. Number Theory 212 (2020), 458-482.
%F A387207 a(n) <= A005117(n) for all n >= 2 [Dress-Scharlau].
%e A387207 For n = 2, every additively indecomposable element in Q(sqrt(A005117(2))) = Q(sqrt(2)) has norm either 1 or 2, thus a(2) = 2.
%e A387207 For n = 3, every additively indecomposable element in Q(sqrt(A005117(3))) = Q(sqrt(3)) has norm 1, thus a(3) = 1.
%e A387207 For n = 4, every additively indecomposable element in Q(sqrt(A005117(4))) = Q(sqrt(5)) has norm 1, thus a(4) = 1.
%e A387207 For n = 5, every additively indecomposable element in Q(sqrt(A005117(5))) = Q(sqrt(6)) has norm either 1 or 3, thus a(5) = 3.
%o A387207 (SageMath)
%o A387207 def a(n):
%o A387207     D = [d for d in range(2*n) if Integer(d).is_squarefree()][n-1]
%o A387207     K.<a> = QuadraticField(D); OK = K.ring_of_integers(); ans = 0
%o A387207     if (D%4==1): cf, d = continued_fraction((a-1)/2), (a+1)/2
%o A387207     else: cf, d = continued_fraction(a), a
%o A387207     s = len(cf.period())
%o A387207     ai = [1]+[c.numer() + c.denom()*d for c in cf.convergents()[:2*s+1]]
%o A387207     ind = [ai[i]+t*ai[i+1] for i in range(0, 2*s+1, 2) for t in range(cf[i+1])]
%o A387207     return max([c.norm() for c in ind])
%Y A387207 Cf. A005117, A035015, A387203.
%K A387207 nonn,new
%O A387207 2,1
%A A387207 _Robin Visser_, Aug 21 2025