cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A387213 Decimal expansion of Integral_{x>=0} sin(x) * sin(x^2) dx.

Original entry on oeis.org

4, 9, 1, 6, 9, 9, 6, 7, 7, 6, 9, 3, 8, 2, 1, 1, 1, 7, 7, 1, 6, 5, 4, 6, 2, 5, 4, 1, 6, 8, 9, 0, 8, 1, 0, 0, 2, 2, 1, 5, 1, 0, 2, 7, 1, 2, 6, 8, 7, 5, 5, 0, 7, 7, 2, 5, 5, 9, 0, 4, 8, 1, 7, 9, 1, 4, 7, 4, 5, 0, 7, 2, 2, 3, 7, 5, 6, 2, 9, 6, 3, 8, 1, 0, 1, 9, 1, 1, 8, 9, 9, 8, 7, 5, 7, 6, 4, 6, 6, 2, 9, 0, 2, 1, 1
Offset: 0

Views

Author

Amiram Eldar, Aug 22 2025

Keywords

Examples

			0.49169967769382111771654625416890810022151027126875...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Integrate[Sin[x]*Sin[x^2], {x, 0, Infinity}], 10, 120][[1]]
    (* or *)
    RealDigits[Sqrt[Pi/2] * (Cos[1/4] * FresnelC[1/Sqrt[2*Pi]] + Sin[1/4] * FresnelS[1/Sqrt[2*Pi]]), 10, 120][[1]]

Formula

Equals sqrt(Pi/2) * (cos(1/4) * FresnelC(1/sqrt(2*Pi)) + sin(1/4) * FresnelS(1/sqrt(2*Pi))), where FresnelC(x) and FresnelS(x) are the Fresnel integrals C(x) and S(x), respectively.
Equals Integral_{x=0..1/2} cos(x^2 - 1/4) dx.