This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A387275 #17 Aug 31 2025 04:37:37 %S A387275 1,15,154,1350,10890,83650,623056,4547520,32735085,233369675, %T A387275 1652203542,11638252730,81674873553,571575363975,3991529920440, %U A387275 27829484027400,193791573179883,1348196149698885,9372495529924710,65120144658997050,452263192928596896 %N A387275 a(n) = Sum_{k=0..n} 3^(n-k) * binomial(n+2,k+2) * binomial(2*k+4,k+4). %H A387275 Vincenzo Librandi, <a href="/A387275/b387275.txt">Table of n, a(n) for n = 0..800</a> %F A387275 n*(n+4)*a(n) = (n+2) * (5*(2*n+3)*a(n-1) - 21*(n+1)*a(n-2)) for n > 1. %F A387275 a(n) = Sum_{k=0..floor(n/2)} 5^(n-2*k) * binomial(n+2,n-2*k) * binomial(2*k+2,k). %F A387275 a(n) = [x^n] (1+5*x+x^2)^(n+2). %F A387275 E.g.f.: exp(5*x) * BesselI(2, 2*x), with offset 2. %F A387275 a(n) ~ 7^(n + 5/2) / (2*sqrt(Pi*n)). - _Vaclav Kotesovec_, Aug 31 2025 %t A387275 Table[Sum[3^(n-k)*Binomial[n+2,k+2]*Binomial[2*k+4,k+4],{k,0,n}],{n,0,25}] (* _Vincenzo Librandi_, Aug 31 2025 *) %o A387275 (PARI) a(n) = sum(k=0, n, 3^(n-k)*binomial(n+2, k+2)*binomial(2*k+4, k+4)); %o A387275 (Magma) [&+[3^(n-k) * Binomial(n+2,k+2) * Binomial(2*k+4,k+4): k in [0..n]]: n in [0..25]]; // _Vincenzo Librandi_, Aug 31 2025 %Y A387275 Cf. A387276, A387277, A387278. %K A387275 nonn,new %O A387275 0,2 %A A387275 _Seiichi Manyama_, Aug 24 2025