cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A387300 Decimal expansion of Sum_{n>=1} (-1)^(n+1) P(2*n)/(2*n), where P(x) is the prime zeta function.

This page as a plain text file.
%I A387300 #11 Aug 28 2025 19:52:54
%S A387300 2,0,9,2,9,5,2,1,4,7,0,1,7,0,4,8,5,8,8,5,4,5,7,4,9,3,3,7,2,1,2,9,7,9,
%T A387300 6,0,4,3,9,2,5,1,1,4,3,1,3,0,3,2,2,0,1,5,3,1,0,0,4,8,0,4,1,0,8,3,6,9,
%U A387300 8,8,7,0,5,7,8,3,0,7,2,8,5,9,6,8,2,5,1,5,4,6,1,7,7,9,6,6,1,4,2,0,9,1,9,5,8
%N A387300 Decimal expansion of Sum_{n>=1} (-1)^(n+1) P(2*n)/(2*n), where P(x) is the prime zeta function.
%F A387300 Equals log(sqrt(15)/Pi).
%F A387300 For m > 1, Sum_{k>=1} (-1)^(k+1) * primezeta(m*k)/k = log(zeta(m)/zeta(2*m)). - _Vaclav Kotesovec_, Aug 25 2025
%e A387300 0.20929521470170485885457493372...
%t A387300 RealDigits[Log[Sqrt[15]/Pi], 10, 105][[1]]
%Y A387300 Cf. A387289, A387293, A387303.
%K A387300 nonn,new
%O A387300 0,1
%A A387300 _Artur Jasinski_, Aug 25 2025