This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A387305 #46 Sep 02 2025 09:24:30 %S A387305 3,3,1,3,1,1,1,3,1,1,1,1,1,1,19,3,1,1,1,1,1,1,3,1,1,1,3,1,3,19,1,3,1, %T A387305 1,1,1,1,1,3,1,1,1,3,1,9,3,1,1,1,1,7,1,5,3,1,1,3,3,1,19,1,1,67,3,1,1, %U A387305 1,1,1,1,3,1,1,1,5,1,5,3,1,1,1,1,5,1,5,3 %N A387305 Least k such that the Hamming weight (A000120) of n*k is prime. %C A387305 a(n) is always odd. %H A387305 Pablo Cadena-UrzĂșa, <a href="/A387305/b387305.txt">Table of n, a(n) for n = 1..10000</a> %F A387305 a(n) = min{k >= 1 : A000120(n*k) is prime}. %F A387305 a(n) = 1 if A000120(n) is prime (see A052294). %F A387305 For all m >= 0, a(2^m) = 3. %e A387305 a(1) = 3 because A000120(1) = 1 (not prime), A000120(2) = 1, and A000120(3) = 2 (prime). %e A387305 a(11) = 1 because A000120(11) = 3 (prime). %e A387305 a(15) = 19 since 15*19 = 285 and A000120(285) = 5 (prime); for 1 <= k < 19 the value A000120(15*k) is not prime. %t A387305 A387305[n_] := Module[{k = -1}, While[!PrimeQ[DigitSum[(k += 2)*n, 2]]]; k]; %t A387305 Array[A387305, 100] (* _Paolo Xausa_, Sep 02 2025 *) %o A387305 (PARI) a(n) = {my(k=1); while(!isprime(hammingweight(n*k)), k++); k}; %o A387305 vector(100, n, a(n)) \\ first 100 terms %o A387305 (Python) %o A387305 import sympy as sp %o A387305 def a(n, kmax=10**6): %o A387305 for k in range(1, kmax + 1): %o A387305 if sp.isprime((n*k).bit_count()): %o A387305 return k %o A387305 return None %o A387305 def A(N): %o A387305 return [a(n) for n in range(1, N + 1)] %Y A387305 Cf. A000120, A052294. %K A387305 nonn,base,new %O A387305 1,1 %A A387305 _Pablo Cadena-UrzĂșa_, Aug 25 2025