cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A387317 Number of good involutions of all nontrivial linear quandles of order n.

This page as a plain text file.
%I A387317 #12 Sep 03 2025 20:24:21
%S A387317 1,4,1,2,1,44,1,2,1,414,1,2,31,5784,1,2,1,97358,237,2,1,1917064,1,2,1,
%T A387317 42406158,1
%N A387317 Number of good involutions of all nontrivial linear quandles of order n.
%C A387317 A linear quandle is a pair (Z/nZ, k) where k is a unit in Z/nZ, viewed as an Alexander quandle under the operation a(b) := ka + (1-k)b. A linear quandle is trivial if and only if k = 1.
%C A387317 A good involution f of a quandle Q is an involution that commutes with all inner automorphisms and satisfies the identity f(y)(x) = y^-1(x). The pair (Q,f) is called a symmetric quandle.
%D A387317 Seiichi Kamada, Quandles with good involutions, their homologies and knot invariants, Intelligence of Low Dimensional Topology 2006, World Scientific Publishing Co. Pte. Ltd., 2007, 101-108.
%H A387317 Lực Ta, <a href="https://arxiv.org/abs/2508.16772">Good involutions of twisted conjugation subquandles and Alexander quandles</a>, arXiv:2508.16772 [math.GT], 2025. See Table 2.
%H A387317 Lực Ta, <a href="https://github.com/luc-ta/Symmetric-Linear-Quandles">Symmetric-Linear-Quandles</a>, GitHub, 2025.
%H A387317 <a href="/index/Qua#quandles">Index entries for sequences related to quandles and racks</a>
%F A387317 If A060594(n) = 2, then a(n) = 1 if n is odd, a(n) = 4 if n = 4, and a(n) = 2 otherwise. See Ta, Ex. 5.8 and Prop. 5.9.
%F A387317 For all n >= 1, we have a(4n) >= A202828(n), with equality if and only if n = 1. See Ta, Thm. 5.11.
%o A387317 (GAP) See Ta, GitHub link
%Y A387317 Cf. A060594, A202828, A386233, A386234.
%K A387317 nonn,more,new
%O A387317 3,2
%A A387317 _Luc Ta_, Aug 26 2025
%E A387317 Some terms corrected by _Luc Ta_, Sep 03 2025