cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A387321 Decimal expansion of the second largest dihedral angle, in radians, in a gyroelongated square cupola (Johnson solid J_23).

Original entry on oeis.org

2, 6, 4, 1, 2, 0, 9, 0, 0, 0, 3, 7, 4, 0, 3, 9, 5, 4, 4, 0, 2, 1, 4, 5, 1, 0, 5, 2, 8, 5, 1, 1, 3, 5, 8, 3, 2, 6, 7, 9, 8, 7, 1, 6, 7, 8, 2, 5, 4, 8, 2, 9, 5, 2, 6, 2, 7, 5, 0, 5, 3, 7, 4, 4, 6, 2, 4, 5, 2, 5, 3, 7, 1, 3, 7, 8, 9, 6, 2, 7, 0, 0, 0, 5, 2, 0, 7, 5, 4, 4
Offset: 1

Views

Author

Paolo Xausa, Aug 27 2025

Keywords

Comments

This is the dihedral angle between adjacent triangular faces at the edge where the antiprism and cupola parts of the solid meet.
Also the analogous dihedral angle in a gyroelongated square bicupola (Johnson solid J_45).

Examples

			2.6412090003740395440214510528511358326798716782548...
		

Crossrefs

Cf. other J_23 dihedral angles: A177870, A195702, A387320, A387322, A387323.
Cf. A384214 (J_23 volume), A384215 (J_23 surface area).
Cf. A385258 (J_45 volume), A385259 (J_45 surface area).

Programs

  • Mathematica
    First[RealDigits[ArcSec[Sqrt[3]] + ArcCos[-Sqrt[(7 + Sqrt[32] - 2*Sqrt[20 + 14*Sqrt[2]])/3]], 10, 100]] (* or *)
    First[RealDigits[RankedMax[Union[PolyhedronData["J23", "DihedralAngles"]],2], 10, 100]]

Formula

Equals arcsec(sqrt(3)) + arccos(-sqrt((7 + 4*sqrt(2) - 2*sqrt(20 + 14*sqrt(2)))/3)) = A195696 + arccos(-sqrt((7 + A010487 - 2*sqrt(20 + 14*A002193))/3)).
Equals A195696 + A387323.