cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A387327 Number of ways to choose an integer partition of each prime factor of n (with multiplicity).

This page as a plain text file.
%I A387327 #6 Sep 05 2025 23:46:00
%S A387327 1,2,3,4,7,6,15,8,9,14,56,12,101,30,21,16,297,18,490,28,45,112,1255,
%T A387327 24,49,202,27,60,4565,42,6842,32,168,594,105,36,21637,980,303,56,
%U A387327 44583,90,63261,224,63,2510,124754,48,225,98,891,404,329931,54,392,120
%N A387327 Number of ways to choose an integer partition of each prime factor of n (with multiplicity).
%e A387327 The a(1) = 1 through a(7) = 15 ways:
%e A387327   (1)  (2)   (3)    (2)(2)    (5)      (2)(3)     (7)
%e A387327        (11)  (21)   (11)(2)   (32)     (11)(3)    (43)
%e A387327              (111)  (2)(11)   (41)     (2)(21)    (52)
%e A387327                     (11)(11)  (221)    (11)(21)   (61)
%e A387327                               (311)    (2)(111)   (322)
%e A387327                               (2111)   (11)(111)  (331)
%e A387327                               (11111)             (421)
%e A387327                                                   (511)
%e A387327                                                   (2221)
%e A387327                                                   (3211)
%e A387327                                                   (4111)
%e A387327                                                   (22111)
%e A387327                                                   (31111)
%e A387327                                                   (211111)
%e A387327                                                   (1111111)
%t A387327 Table[Length[Tuples[IntegerPartitions/@Flatten[ConstantArray@@@FactorInteger[n]]]],{n,30}]
%Y A387327 For constant partitions we have A061142, for prime indices A355731.
%Y A387327 For prime indices instead of factors we have A299200.
%Y A387327 The version for distinct choices is A387133, zeros A387326.
%Y A387327 A000041 counts integer partitions, strict A000009.
%Y A387327 A112798 lists prime indices, row sums A056239 or A066328, lengths A001222.
%Y A387327 A387110 counts choices of distinct distinct integer partitions of each prime index.
%Y A387327 Cf. A063834, A120383, A299201, A335433, A335448, A355741, A357977, A383706, A387115, A387120, A387136.
%K A387327 nonn,new
%O A387327 1,2
%A A387327 _Gus Wiseman_, Sep 05 2025