cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A387133 Number of ways to choose a sequence of distinct integer partitions, one of each prime factor of n (with multiplicity).

Original entry on oeis.org

1, 2, 3, 2, 7, 6, 15, 0, 6, 14, 56, 6, 101, 30, 21, 0, 297, 12, 490, 14, 45, 112, 1255, 0, 42, 202, 6, 30, 4565, 42, 6842, 0, 168, 594, 105, 12, 21637, 980, 303, 0, 44583, 90, 63261, 112, 42, 2510, 124754, 0, 210, 84, 891, 202, 329931, 12, 392, 0, 1470, 9130
Offset: 1

Views

Author

Gus Wiseman, Aug 26 2025

Keywords

Examples

			The prime factors of 9 are (3,3), and the a(9) = 6 choices are:
  ((3),(2,1))
  ((3),(1,1,1))
  ((2,1),(3))
  ((2,1),(1,1,1))
  ((1,1,1),(3))
  ((1,1,1),(2,1))
		

Crossrefs

For prime factors instead of partitions we have A008966, see A355741.
Twice partitions of this type are counted by A296122.
For prime indices instead of factors we have A387110, see A387136.
For strict partitions and prime indices we have A387115.
For constant partitions and prime indices we have A387120.
Positions of zero are A387326, for indices apparently A276079 (complement A276078).
Allowing repeated partitions gives A387327, see A299200, A357977.
A000041 counts integer partitions, strict A000009.
A003963 multiplies together prime indices.
A112798 lists prime indices, row sums A056239 or A066328, lengths A001222.
A120383 lists numbers divisible by all of their prime indices.
A289509 lists numbers with relatively prime prime indices.

Programs

  • Mathematica
    Table[Length[Select[Tuples[IntegerPartitions/@Flatten[ConstantArray@@@FactorInteger[n]]],UnsameQ@@#&]],{n,30}]

A387136 Number of ways to choose a sequence of distinct prime factors, one of each prime index of 2n - 1.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 0, 0, 2, 1, 1, 1, 2, 1, 1, 2, 0, 2, 0, 1, 1, 1, 0, 1, 2, 0, 1, 1, 1, 2, 2, 0, 1, 2, 0, 1, 1, 1, 2, 1, 1, 1, 1, 0, 2, 1, 0, 2, 1, 1, 3, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 2, 2, 2, 2, 2, 0, 2, 2, 0, 1, 1, 0, 1, 2, 1, 2, 2, 0, 2
Offset: 1

Views

Author

Gus Wiseman, Aug 30 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 4537 are {6,70}, with choices (2,5), (2,7), (3,2), (3,5), (3,7). Since 4537 = 2 * 2269 - 1, we have a(2269) = 5.
		

Crossrefs

Here we use the version with alternating zeros (put n instead of 2n - 1 in the name).
Twice partitions of this type are counted by A296122.
Positions of zero are A355529, complement A368100.
For divisors instead of prime factors we have A355739.
Allowing repeated choices gives A355741.
For partitions instead of prime factors we have A387110.
For initial intervals instead of prime factors we have A387111.
For strict partitions instead of prime factors we have A387115, disjoint case A383706.
For constant partitions instead of prime factors we have A387120.
A000041 counts integer partitions, strict A000009.
A003963 multiplies together prime indices.
A112798 lists prime indices, row sums A056239 or A066328, lengths A001222.
A120383 lists numbers divisible by all of their prime indices.
A289509 lists numbers with relatively prime prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Tuples[If[#==1,{},First/@FactorInteger[#]]&/@prix[2n-1]],UnsameQ@@#&]],{n,100}]
Showing 1-2 of 2 results.